

Unicenter

TCPaccess Communications Server
Customization Guide

Version 6.0

The Software That Manages eBusiness

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is for
the end user’s informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part, without
the prior written consent of CA. This documentation is proprietary information of CA and protected by the copyright
laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy. Only
authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of the
license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force and
effect. Should the license terminate for any reason, it shall be the user’s responsibility to return to CA the reproduced
copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct or
indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user’s
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or
DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

 2002 Computer Associates International, Inc. (CA)

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

 Contents

Chapter 1: Configuration Overview
Configuration Files... 1–1
Configuration File Roadmap .. 1–2

APPCFGxx Functions ... 1–2
TCPCFGxx Functions ... 1–3
IFS Services, SNMP, TelnetRTM and Portmapper ... 1–3
DNR Files—DNR Configuration Member Functionality .. 1–4

Task Groups .. 1–5

Chapter 2: Customizing Address Space Operations
(IJTCFGxx)
The IFSPARM Statement... 2–1

IFSPARM Statement Syntax .. 2–2
IFSPARM Usage Notes... 2–6

Controlling Message Logging .. 2–7
LOGGING Statement.. 2–7
Component and Message Type Definitions .. 2–10
Logging Examples... 2–12

Setting SMF Parameters... 2–13
SMF Statement Syntax.. 2–13
SMF Usage Notes .. 2–14

Setting Exit Points .. 2–15
Security Settings ... 2–19

Security Statement Syntax.. 2–19
POOLDEF Settings... 2–21

Contents iii

Chapter 3: Network Configuration
TCP Stack Configuration Member (TCPCFGxx) ... 3–2
Defining Stack Unique Settings—SYSUNIQ Statement ... 3–3

SYSUNIQ Statement ... 3–3
SYSUNIQ Statement Usage Notes... 3–3
SYSUNIQ Example .. 3–4

Defining Physical Medium ... 3–4
MEDIA Statement Syntax .. 3–4
MEDIA Statement Usage Notes.. 3–8

Defining IP Addressing... 3–11
NETWORK Statement Syntax... 3–11

Network Statement Usage Notes... 3–12
Multihomed Example.. 3–13

Multihome/Multiplex.. 3–13
NETWORK Example .. 3–14

Driver Statements... 3–14
CDLC Statement... 3–14

CDLC Statement Syntax... 3–15
CDLC Statement Usage Notes .. 3–16

Example NCP Coding ... 3–16
CETI Driver Configuration ... 3–18

CETI Statement Syntax... 3–18
CETI Statement Usage Notes .. 3–21
CETI Example.. 3–21

CLAW Driver Configuration.. 3–22
CLAW Protocol ... 3–22

CLAW Statement Syntax .. 3–24
CLAW Statement Usage Notes .. 3–26

CLAW Example .. 3–28
CTC Driver Configuration.. 3–29

CTC Statement Syntax.. 3–29
CTC Example... 3–31

HYPERchannel Configuration ... 3–32
HYPER Statement ... 3–32
HYPER Statement Usage Notes .. 3–33

 HYPER Example.. 3–34
LCS Configuration Parameters .. 3–34

LCS Statement ... 3–35

iv Customization Guide

3172 and 8232 Configuration .. 3–36
LINK Statement Syntax .. 3–36
LINK Statement Usage Notes.. 3–38
LINK Example ... 3–39

XCF Driver Configuration... 3–40
XCF Statement ... 3–40

XCF Statement Syntax ... 3–40
XCF Statement Usage Notes... 3–41
XCF Example .. 3–42

ARP Configuration... 3–43
ARP Statement Syntax... 3–43
ARP Statement Usage Notes.. 3–44
ARP Examples ... 3–44

Defining Application Dynamic VIPA Subnets... 3–45
VIPANET Statement Syntax .. 3–45
VIPANET Statement Usage Notes.. 3–46
VIPANET Example ... 3–46

Chapter 4: Internet Route Configuration
Manually Specifying Internet Routes .. 4–1
ROUTE Statement .. 4–2

ROUTE Statement Syntax .. 4–4
Subnets Are Local.. 4–5
Usage Notes for the ROUTE Statement ... 4–6
ROUTE Statement Examples ... 4–6

Chapter 5: TCP, UDP, RAW and IP Protocol Configuration
(TCPCFGxx)
Fine-Tuning the Transmission Control Protocol.. 5–2

TCP Statement Syntax .. 5–2
TCP Examples.. 5–11

Fine-Tuning the User Datagram Protocol ... 5–13
UDP Statement Syntax ... 5–13
UDP Examples... 5–17

Fine-Tuning the RAW Protocol .. 5–17
Fine-Tuning the Internet Protocol.. 5–20
POOLDEF Settings... 5–22

Contents v

Chapter 6: Domain Name Resolver (DNR) Configuration
Introducing the Domain Name Resolver (DNR) ... 6–2
Services Provided by DNR ... 6–2
Major Components of the Domain Name System (DNS)... 6–3

Locally Managed Names ... 6–3
Domain Name Specification.. 6–3
How DNR Resolves Host Names ... 6–4
DNR Suffix Conventions.. 6–5

Initial DNR Customization ... 6–5
Configuring DNR in LOCAL or GLOBAL Mode.. 6–7
Primary DNR Configuration Member (DNRCFGxx).. 6–9

POOLDEF Statement.. 6–9
DNR Statement Syntax... 6–10

Controlling DNR Member Processing .. 6–13
DNRCFGxx Examples.. 6–13
Recommendations .. 6–14

Secondary DNR Members .. 6–16
Mapping Host Names (DNRHSTxx)... 6–16

Host Name Syntax .. 6–17
DNRHSTxx Example.. 6–17
GLOBAL Example .. 6–18
LOCAL Example... 6–18

Host Name Aliases (DNRALCxx).. 6–19
DNRALCxx Format .. 6–20
Search String Syntax ... 6–21
Host Aliases Examples ... 6–21

Search Lists (DNRSLCxx) ... 6–23
Search List Syntax ... 6–23
DNRSLCxx Usage... 6–24
Search List Examples.. 6–25

Coordinating DNRALCxx and DNRSLCxx Configuration ... 6–26
DNR Alias and Search List Recommendations... 6–27

Name Servers (DNRNSCxx)... 6–28
Name Server Syntax ... 6–28
DNRNSCxx Operation... 6–29
Name Servers Example .. 6–31

Setting Network Preferences (DNRNPCxx)... 6–31
Network Preferences Syntax ... 6–31
DNRNPCxx Configuration.. 6–32
Network Preference Example.. 6–32

vi Customization Guide

Setting Network Name to Network Number Mapping (DNRNETxx)... 6–33
Network Syntax... 6–33
Network Names Examples .. 6–34

Setting Protocol Name to Address Mappings (DNRPRTxx).. 6–35
Protocol Name Syntax .. 6–35
Protocol Names Example ... 6–36

Setting Protocol Name/Service Pairs to Port Numbers (DNRSVCxx) ... 6–36
Protocol Name/Service Pair Syntax ... 6–36

DNRSVCxx Configuration.. 6–37
Service Names Example ... 6–38

Setting RPC Name-to-Program Mappings (DNRRPCxx)... 6–38
RPC Name-to-Program Mappings Syntax... 6–38
RPC Name Example ... 6–40

DNR Customization Examples... 6–40
DNR with Only Configuration Data .. 6–40
Migration of DNR to DNS ... 6–42
DNR with Only the Domain Name System... 6–46
DNR Configuration Set for a Network with a Domain Name Server ... 6–48

DNRALCWG.. 6–49
DNRCFGWG .. 6–49
DNRHSTWG .. 6–50
DNRNETWG .. 6–50
DNRNPCWG.. 6–50
DNRNSCWG .. 6–50
DNRSLCWG... 6–50

DNR Configuration Set Without a Domain Name Server... 6–51
DNRALCWL... 6–52
DNRCFGWL... 6–52
DNRHSTWL ... 6–53
DNRNPCWL .. 6–53
DNRSLCWL.. 6–53

DNR Configuration Set with a Domain Name Server and a Firewall ... 6–54
DNRALCWF... 6–55
DNRCFGWF ... 6–55
DNRHSTWF ... 6–55
DNRNETWF... 6–56
DNRNPCWF... 6–56
DNRNSCWF... 6–56
DNRSLCWF.. 6–56

Contents vii

Chapter 7: UNIX System Services Configuration
Configuring for UNIX System Services .. 7–2
SYS1.PARMLIB (BPXPRMxx) .. 7–2
Using the Unicenter TCPaccess Stack Only.. 7–3

FILESYSTYPE Statement.. 7–3
NETWORK Statement.. 7–4

Common Inet Support... 7–5
FILESYSTYPE Statement.. 7–5
SUBFILESYSTYPE Statement.. 7–6
NETWORK Statement.. 7–6
Common Inet and USS (OE) Considerations .. 7–7

Startup Configuration ... 7–8
Host Name/Address Resolution ... 7–8
UNIX System Services Telnet Daemon Access .. 7–8

Configuring T016TNDP to Run from an MVS Data Set .. 7–10
Configuring T016TNDP to Run in the INETD Environment.. 7–10
OE Telnet Banner Display.. 7–12
Invoking the T016TNDP Telnet Daemon for Debugging.. 7–14

UNIX System Services Timer Daemon Access... 7–15
Configuring T016TIDP and T016TICP to Run from MVS... 7–16
Invoking the T016TIDP Timer-Synchronization Daemon... 7–17

Usage Guidelines ... 7–17
Example... 7–18

Invoking the T016TICP Timer-Synchronization Sample Client ... 7–18

Chapter 8: Global Application Parameters
GLOBAL Parameters (APPCFGxx) ... 8–1

GLOBAL Statement .. 8–1
Examples .. 8–4

Chapter 9: Telnet Configuration
Telnet Configuration Options .. 9–2
Configuring the TN3270E Telnet Server... 9–3

TN3270E Usage Considerations.. 9–4
Telnet SSL—Secure Sockets Layer.. 9–5
Functions Not Supported by the TN3270E Servers.. 9–5

Protocol Service Segment (SERVICE).. 9–6
SERVICE Syntax.. 9–6

viii Customization Guide

Telnet SERVICE Statement Usage Notes ... 9–11
SERVICE Examples... 9–13
SERVICE Statement Example.. 9–15

The TELNET Statement... 9–16
TELNET Statement Syntax... 9–16
Usage Notes ... 9–21
TELNET Examples.. 9–22

Server Telnet Application Segment (APPL) ... 9–22
TELNET APPL Syntax.. 9–22
TELNET APPL Statement Usage Notes... 9–27
APPL Examples ... 9–28

Additional Configuration Statements for the T04STSSL Server .. 9–29
TNGLOBAL Statement... 9–29
TNNONSSL Statement... 9–30
KEYRING Statement... 9–31
TNSSL Statement... 9–35

TNSSL Statement Syntax .. 9–35
TNSSL Usage Notes... 9–37

SSL Configuration Example... 9–37
The LU Pool Facility—APPLUPxx Member ... 9–38

Virtual Terminal Setup... 9–38
LU Name Pools (LUPOOL) .. 9–39
LU Name Rules (LURULE)... 9–41
Refreshing the LUPOOL Facility ... 9–42

LUPOOL Statement ... 9–42
 LUPOOL Statement Syntax.. 9–42
LU Specification for TN3270 and Printers ... 9–44

Examples ... 9–45
Specifying One Printer for Multiple Terminal LUs... 9–45

LURULE Statement.. 9–46
LURULE Statement Syntax... 9–46
Initial Changes to APPLUPxx .. 9–48

 Usage Notes .. 9–48
APPLUPxx Usage Notes .. 9–49
APPLUPxx Examples ... 9–50

Terminal Profile (TERMPROF)... 9–51
TERMPROF Statement Syntax .. 9–51
TERMPROF Statement Usage Notes .. 9–53
Default Terminal Profiles ... 9–55
TERMPROF Example ... 9–56

Modifying VTAMLST Application Definitions ... 9–57

Contents ix

Setting Up Pools.. 9–58
Unicenter TCPaccess Telnet Server Application Definitions.. 9–58

Customizing the Application Definition ACBNAME .. 9–59
Customizing the Application Definition LU Name .. 9–60
Customizing the Terminal Definition LU Name... 9–61
Customizing the Terminal Definition ACBNAME ... 9–62
Adding or Deleting Terminal Definitions .. 9–63

Configuring to VTAM Applications .. 9–64
USS Table Support for Server Telnet... 9–65

USS Table Customization Requirements... 9–66
Using LOGMODE with USSTAB.. 9–67
Preparing USS Tables ... 9–68

Chapter 10: TelnetRTM Configuration
RTMCFGxx Customization .. 10–2
POOLDEF Statements ... 10–2

Chapter 11: Configuring FTP
The File Transfer Protocol (FTP) Service Statement .. 11–2

FTP SERVICE Statement Syntax ... 11–2
Example.. 11–2

FTP Configuration Parameters—FTP Statement ... 11–3
FTP Statement Syntax... 11–3
FTP Statement Usage Notes .. 11–16
FTP Examples .. 11–20

Generic Attributes Table (GAT) ... 11–21
GAT Statement Syntax ... 11–21
GAT Statement Usage Notes... 11–25
GAT Examples... 11–26

FTP Support for SMF Activity Reporting and User Accounting... 11–27
Defining SMF... 11–27
Defining FTP to Require Account Data ... 11–27
Running an SMP/E APPLY CHECK ... 11–28
Defining SMF Account Exit ... 11–28

FTPSRC and FTPLOGIN Exits ... 11–29
Server FTP JES Support ... 11–29

Minimum Requirements.. 11–29
Using the Server FTP JES Interface... 11–30

x Customization Guide

Examples .. 11–33

Chapter 12: Mail Customization (SMTP)
Configuring User-Level Services ... 12–1
Configuring Simple Mail Transfer Protocol (SMTP) Facilities... 12–2

Mail Service Statements.. 12–2
Customizing Your Mail Environment.. 12–3

User/Server SMTP Segment (SMTP) .. 12–7
User SMTP Operands Syntax .. 12–7
Server SMTP Operands Syntax ... 12–7
User and Server SMTP Operands Syntax .. 12–7
Spooler SMTP Operands Syntax ... 12–7
User and Spooler Operands Syntax.. 12–8
SMTP Usage Notes.. 12–13

Using SMTP .. 12–19
Usage Notes for SMTP.. 12–19
SMTP Examples... 12–21

Chapter 13: Configuring Remote Printing Services
Printing Services... 13–1

SERVICE Statement Syntax for LPR... 13–1
Usage Notes .. 13–2
Examples ... 13–2

Network Line Printer Segment (LPR).. 13–3
LPR Statement Syntax .. 13–3
Usage Notes ... 13–4
LPR Statement Example ... 13–5

Chapter 14: Remote Procedure Call (RPC) Configuration
The Portmapper.. 14–1
Port Registration... 14–2
MAPCFGxx Configuration ... 14–4

PORTMAP Statement Syntax .. 14–4
Example .. 14–4

Contents xi

Chapter 15: SNMP Agent Configuration
SNMP Agent Configuration ... 15–1

Object Identifiers ... 15–2
Supported Traps.. 15–3
SNMP Activation .. 15–3

SNMCFGxx Customization .. 15–4
SNMP Statement Syntax .. 15–4
SNMP Usage Notes .. 15–7
Example.. 15–8

SNMP DPI ... 15–9
Benefits of Using SNMP DPI... 15–9
SNMP DPI Configuration .. 15–10
Linking a DPI Application for Unicenter TCPaccess ... 15–10
Testing Unicenter TCPacess DPI Functionality .. 15–12

JCL for Testing DPI.. 15–12
Compiling MIB Definitions ... 15–14

SNMP DPI Functions... 15–16
mkDPIlist()... 15–17

Synopsis .. 15–17
Description.. 15–17

fDPIparse()... 15–18
Synopsis .. 15–18
Description.. 15–18

mkDPIregister()... 15–19
Synopsis .. 15–19
Description.. 15–19
Return Values ... 15–19

mkDPIresponse() .. 15–19
Description.. 15–19
Return Values ... 15–20

mkDPIset() ... 15–20
Synopsis .. 15–20
Description.. 15–21
Return Values ... 15–21

mkDPItrap()... 15–22
Synopsis .. 15–22
Description.. 15–22
Return Values ... 15–22

mkDPItrape()... 15–23
Synopsis .. 15–23

xii Customization Guide

Description.. 15–23
pDPIpacket() .. 15–23

Synopsis... 15–23
Description.. 15–23
Return Values ... 15–24

query_DPI_port() .. 15–24
Synopsis... 15–24
Description.. 15–24
Return Values ... 15–24

lookup_host()... 15–24
Synopsis... 15–24
Description.. 15–24
Return Value... 15–25

DPIdebug()... 15–25
Synopsis... 15–25
Description.. 15–25
Examples ... 15–26

fDPIset().. 15–26
Synopsis... 15–26
Description.. 15–26

DPIawait_packet_from_agent()... 15–27
Synopsis... 15–27
Description.. 15–27
Return Values ... 15–28

DPIconnect_to_Agent_TCP()... 15–29
Synopsis... 15–29
Description.. 15–29
Return Values ... 15–30

DPIdisconnect_from_agent() ... 15–30
Synopsis... 15–30
Description.. 15–30

DPIget_fd_for_handle().. 15–31
Synopsis... 15–31
Description.. 15–31
Return Value... 15–31

DPIsend_packet_to_agent() ... 15–32
Synopsis... 15–32
Description.. 15–32
Return Values ... 15–32

read_dpi_packet_on_fd() ... 15–33
Synopsis... 15–33

Contents xiii

Description.. 15–33
Return Values ... 15–33

Chapter 16: Fault Tolerant Network Configuration
Unicenter TCPaccess Fault Tolerant Feature.. 16–2

Fault Tolerant Limitations ... 16–2
Managing Controller Failures ... 16–3
Managing Router Failures ... 16–3

Multiplexing ... 16–3
Configuring the TCPCFGxx Member for Multiplexing... 16–4
Balancing I/O Traffic.. 16–4

Router Failures ... 16–5
Multihoming... 16–5
Configuration Example ... 16–7
Virtual IP Addressing.. 16–8

Benefits of Virtual IP Addressing ... 16–8
Detecting Down Interfaces ... 16–9
Using VIPA with GateD.. 16–9

Static and Dynamic VIPAs... 16–10
Using Dynamic VIPAs ... 16–11

Using Application Dynamic VIPAs .. 16–11
Resolving Dynamic VIPA Conflicts .. 16–12

Automatic VIPA Recovery .. 16–13
Environment... 16–13
Configurations.. 16–14
TCPCFGF1 .. 16–15
GTDCFGF1 ... 16–16
TCPCFGF2 .. 16–17
GTDCFGF2 ... 16–18
TCPCFGD2 ... 16–19
TCPCFGA2 ... 16–19
TCPCFGD1 ... 16–20
TCPCFGA1 ... 16–20

GateD ... 16–21
Routing Protocols.. 16–21

RIP.. 16–21
OSPF .. 16–22
GateD Example .. 16–25

Non-Broadcast Multi-Access... 16–26
Improving Fault Tolerant Reliability... 16–27

xiv Customization Guide

TCP Parameters ... 16–27
Running the Routing Daemon (GateD)... 16–27

GateD Routing Protocol ... 16–27
GTDCFGxx Member.. 16–28
Configuring Virtual IP Addressing ... 16–29
VIPA Configuration Examples... 16–29

Example of a Fault Tolerant Configuration .. 16–31
Host Addresses.. 16–32
Subnet Addresses.. 16–32
Network and Gateway Addresses.. 16–32
Backbone Network Addresses .. 16–33
Unicenter TCPaccess Configuration... 16–33
GateD Configuration .. 16–34
CIP Configuration Examples ... 16–35

Chapter 17: GateD Configuration—GTDCFGxx
GateD Configuration Member (GTDCFGxx) ... 17–2
Statement Classes ... 17–3
Statement Primitives .. 17–3
Directive Statements .. 17–5
Trace Statements... 17–6
Options Statements .. 17–7
Interfaces Statements ... 17–8
Definition Statements .. 17–11
Protocol Statements.. 17–12

RIP Protocol Configuration.. 17–13
OSPF Protocol Configuration .. 17–15

Chapter 18: Inter-User Communications Vehicle (IUCV)
Sockets
IUCV Sockets .. 18–2
C Socket Replacement Library.. 18–3
IUCV Socket Compatibility... 18–4

Initializing the IUCV Sockets... 18–4
Configuration Information.. 18–6

Configuring the TCPIP.DATA Data Set... 18–6
TCPIP.DATA Implemented... 18–8
Configuring the IJTCFGxx Member ... 18–10

Contents xv

 IFSPARM Statement ... 18–10
Converting from IBM TCP/IP.. 18–10
Converting from API/Link .. 18–11
Compiling/Linking C Applications Using IUCV ... 18–11

Compile and Link a Nonreentrant IUCV Program.. 18–11
Compile and Link a Reentrant IUCV Program... 18–12

Starting and Stopping IUCV Address Space.. 18–14
Limitations and Restrictions... 18–14
Additional References ... 18–15

Chapter 19: High Performance Native Sockets (HPNS)
IFSPARM Statement .. 19–2
TCPIP.DATA Implemented.. 19–3
 HOSTNAME Parameter... 19–5
Compiling/Linking C Applications Using HPNS .. 19–5

Compile and Link a Nonreentrant HPNS Program... 19–5
Compile and Link a Reentrant HPNS Program.. 19–6

Chapter 20: Defining Control Block Pools (POOLDEF
Statement)
Defining Control Block Pools ... 20–1
Configuration Members .. 20–2
POOLDEF Statement Syntax .. 20–2
Pool Types... 20–3

DNRCFGxx Control Block Pool .. 20–3
IJTCFGxx Control Block Pools .. 20–4
TCPCFGxx Control Block Pools.. 20–5
SNMCFGxx Control Block Pools .. 20–6
RTMCFGxx Control Block Pools .. 20–6

Chapter 21: Translation Tables
Unicenter TCPaccess Telnet Server Character Translation .. 21–1

Translate Table Specification... 21–2
Character Table Usage Notes .. 21–2

Choosing a Telnet Translation Table... 21–3
National-Use Characters ... 21–3
Modifying or Adding Translate Tables... 21–4

xvi Customization Guide

Structure of Translate Table Modules ... 21–4
Generating Prefixes for National Language Translate Tables ... 21–5

XLTBL Macro Syntax.. 21–5
XLTBL Macro Example .. 21–7
Maintaining Translation Tables Using UMODTRAN.. 21–7

Chapter 22: Bind Security
Configuring Bind Security .. 22–1

BINDSEC Statement ... 22–2
PORTRULE Statement.. 22–2
PORTRULE Statement Syntax... 22–3
IPRULE Statement... 22–5

Appendix A: SSL Considerations
SAF Considerations for Certificates..A–1
 Examples..A–2

Authorizing the TCPaccess/SSL Server User ID...A–3
TN3270E/SSL Server Performance...A–4

Appendix B: Interface to Unicenter NetSpy
What Unicenter NetSpy Provides ..B–1
Setup...B–1

Index

Contents xvii

Chapter

1 Configuration Overview

This chapter provides an introduction to the configuration files that you need to
tailor Unicenter TCPaccess Communications Server to your site’s requirements.

The following topics are discussed in this chapter:

■ Configuration Files—Describes the Unicenter TCPaccess configuration
members

■ Configuration File Roadmap—Displays the configuration files and their
functions

Configuration Files
The Unicenter TCPaccess configuration members are described briefly below.

Member
Name

Description

IJTCFGxx Holds parameters for address space services provided by the IJT task group, including
timing services, message logging, SMF parameters and exit points.

APPCFGxx Contains configuration statements that describe applications such as TELNET, FTP, and
SMTP that run over Unicenter TCPaccess.

TCPCFGxx Contains configuration statements that describe Unicenter TCPaccess as a host system,
its network interfaces and control values, its routing tables, and the TCP/IP and UDP
services.

APPLUPxx Contains VTAM LU names for use with Server TELNET applications, and rules for
selecting them.

GTDCFGxx Contains configuration statements for using the GateD routing protocol. This file is
needed only for Fault Tolerant Unicenter TCPaccess.

TCPBNDxx Contains configuration statements to describe bind security rules.

DNRALCxx Contains alias names for Unicenter TCPaccess and other hosts.

DNRHSTxx Contains a table of host names and their internet addresses.

Configuration Overview 1–1

Configuration Files

Member
Name

Description

DNRNETxx Contains a table of network names and their internet addresses.

DNRNPCxx Is a list of networks in preferred routing order for DNR queries to DNR servers on
remote hosts that are multihomed.

DNRNSCxx Is a table of domain names with the assigned DNR servers and their internet addresses.

DNRPRTxx Holds a table of protocol names and their numbers.

DNRRPCxx Is a table of RPC names and the corresponding RPC program numbers.

DNRSLCxx Contains a list of domain name suffixes that are combined with partial domain names to
make fully qualified domain names for DNR queries.

DNRSVCxx Is a table of protocol name and service name pairs and their corresponding port
numbers.

MAPCFGxx Contains parameters that control the Port Mapper component of Unicenter TCPaccess.

SNMCFGxx Contains parameters that control the SNMP agent within Unicenter TCPaccess, mainly
SNMP storage pool specifications, authorized management stations, and the data to
which they are given access.

RTMCFGxx Contains parameters that control the TelnetRTM component of Unicenter TCPaccess.

1–2 Customization Guide

Configuration File Roadmap

Configuration File Roadmap
The following diagrams show each of the configuration members and the
functionality associated with each member.

APPCFGxx Functions

TELNET

FTP
 LUPOOL

Mail (SMTP)

LPR

TCPCFGxx Functions

Hardware Interface

Network Description

Routing GateD

Bind Security

IFS Services, SNMP, TelnetRTM and Portmapper

IJTCFGxx, MAPCFGxx, SNMCFGxx and RTMCFGxx Functions

Timing Services
 Portmapper TelnetRTM

Message Logging

SMF

Exits
 SNMP

IJTCFGxx

TCPBNDxx

GTDCFGxx

SNMCFGxx

MAPCFGxx

TCPCFGxx

APPLUPxx

APPCFGxx

RTMCFGxx

Configuration Overview 1–3

Configuration File Roadmap

 DNR Files—DNR Configuration Member Functionality

Host Aliases Domain Name Host

 Resolver Names/Addresses
(Points to all
 other members)

DNRHSTxx DNRCFGxxDNRALCxx

Network Network Name Servers Search List
Names/Addresses Preferences

Protocol RPC Service Name/
Names/Numbers Names/Numbers Port Numbers

DNRNETxx DNRNPCxx DNRNSCxx

DNRPRTxx DNRRPCxx DNRSVCxx

DNRSLCxx

1–4 Customization Guide

Task Groups

Task Groups
An IFS system application address space consists of the IFS job-step task and one
or more application-defined subtask groups (one or more MVS subtasks
performing a common function and dispatching work from a common queue).
Subtask groups are also called task groups. Each task group has a three-character
Task Group Identifier (TGI). The task groups and their functions within the
Unicenter TCPaccess address space are shown below.

The following table describes each of the IFS task groups in more detail.

Task Group Description

TCP The application layers of the Internet protocol suite are implemented in the Transmission
Control Protocol (TCP) task group. This includes TCP, UDP, IP, and network hardware
interface drivers.

The TCP task group uses the services of the DNR task group to perform name resolution.

APP The Application Program Interface (API) task group provides an interface for transport
protocol users to the transport protocol provider. The provider is the TCP Task Group that
specifically provides the TCP and UDP transport protocols. Applications include Client
FTP, Client FTP2, Client FTP3, Server FTP, Server TELNET, VTAM Client TELNET, Server
SMTP, Client SMTP, and TSO Client TELNET.

DNR The Domain Name Resolver (DNR) task group supports dynamic domain name resolution
for the TCP task group. It also provides support for users in other address spaces via an
API using MVS cross-memory services.

The DNR task group implements the protocols necessary to interface with domain name
servers at your site or on the Internet. It resolves domain-style names into Internet
addresses. DNR also performs other useful name resolution functions, including resolving
service and protocol names.

The DNR task group uses the services of the TCP task group.

IJT The IFS Job-step Task (IJT) task group consists of the Unicenter TCPaccess job-step task. It
initializes the address space and provides the first-level handling of operator commands.

MAP The Port Mapper (MAP) task group is a Remote Procedure Call (RPC) server that maps
RPC-based application programs to specific port numbers. This service is required by
application programs that use the RPC interface of the API.

SNM The Simple Network Management (SNM) task group is an SNMP agent that provides
network management stations with data about the Unicenter TCPaccess host. This service
is based on UDP and uses the API interface.

RTM The TelnetRTM (RTM) task group serves as a central repository for Telnet response time
measurement data that is maintained by the Telnet servers and reported on by Unicenter
NetSpy and the NETSTAT TELNET command

Configuration Overview 1–5

Chapter

2
Customizing Address Space
Operations (IJTCFGxx)

This chapter helps you customize Unicenter TCPaccess Address Space
Operations, which is handled through Infrastructure (IFS). The IFS configuration
member is IJTCFGxx.

IFS is a generic, multitasking, runtime environment for MVS system application
address spaces. A system using IFS is an authorized, operator-started task or job
that initializes as a subsystem (the primary JES must be initialized first to
support SYSOUT requirements).

The following topics are discussed in this chapter:

■ The IFSPARM Statement—Describes how to set timing services, time zone,
tracename, and GTF ID

■ Controlling Message Logging—Describes how to tailor message logging

■ Setting SMF Parameters—Describes how to tailor parameters for SMF
statements issued by Unicenter TCPaccess

■ Setting Exit Points—Describes how to configure exit points

■ Security Settings—Describes how to set security

■ POOLDEF Settings—Describes the pools available for Unicenter TCPaccess

Customizing Address Space Operations (IJTCFGxx) 2–1

The IFSPARM Statement

The IFSPARM Statement
Use the IFSPARM statement in IJTCFGxx to set the:

■ GTF ID

■ Timezone

■ Timing services

WARNING! TCPaccess now uses LMP keys in place of the AUTH statement in the
IJTCFG member, however SOLVE:EPS still uses the old style authorization and thus
requires it. SOLVE:EPS users should code a separate IJTCFG00 for EPS.

IFSPARM Statement Syntax
IFSPARM GTFID (value)
 [APPLICATIONS (STACK, IUCV, TELNET,FTP | IUCV | TRACE | NONE)]
 [ARMELEMENT (name)]
 [DATASPACESIZE (size)]
 [INTERNALIUCV | NOINTERNALIUCV]
 [MAXSTGPCT (below, above)]
 [PROMPT | NOPROMPT]
 [SECONDARYNAME (name)]
 [TIMER (interval)]
 [TIMEZONE (ATLANTIC | EASTERN | CENTRAL |
 MOUNTAIN | PACIFIC | char hours)]
 [TRACENAME (name)]
 [VMCFNAME (subsys_name)]
 [VSREPORT (interval) | NOVSREPORT]

GTFID (value) Specifies the identification value for generalized trace facility (GTF) records
produced by Unicenter TCPaccess. This can be specified by a decimal value or a
hexadecimal string.

 Default: X'4F' (79) Range:X'00' - X'4F' (0 - 79).

APPLICATIONS (STACK,IUCV,TELNET,FTP | IUCV | TRACE | NONE)

Specifies the applications to be available to the address space.

The PRFX= JCL parameter and the IFSPARM APPLICATIONS keyword work
together as follows:

■ APPLICATIONS coded, but not PRFX= (this is the preferred method):

Any combination of STACK, TELNET, and FTP may be coded.

– If IUCV is coded with STACK, IUCV will run in the same address space
as the stack. (Running IUCV internally provides improved performance
and easier debugging.)

– If IUCV is coded without STACK, it must stand-alone. This indicates that
the address space will run IUCV externally.

2–2 Customization Guide

The IFSPARM Statement

– If TRACE is coded, it must standalone.

– If NONE is coded alone, no applications will be activated. (This is useful
if base-level operations are the only ones required; for example, an RTM
address space). If NONE is coded with other applications, it is ignored.

■ Both APPLICATIONS and PRFX= coded:

– For PRFX=T01, any combination of STACK, TELNET, and FTP may be
coded. NONE may also be coded; for details, see “APPLICATIONS
coded, but not PRFX=” above.

If IUCV is coded with STACK, IUCV will run in the same address space
as the stack. (Running IUCV internally provides improved performance
and easier debugging.)

– For PRFX=T02, only IUCV may be coded. This indicates that the address
space will run IUCV externally.

– For PRFX=T03, only TRACE may be coded.

■ PRFX= coded, but not APPLICATIONS:

– For PRFX=T01, APPLICATIONS(STACK,TELNET,FTP) will be assumed.

– For PRFX=T02, APPLICATIONS(IUCV) will be assumed.

– For PRFX=T03, APPLICATIONS(TRACE) will be assumed.

■ Neither APPLICATIONS nor PRFX= coded:

– APPLICATIONS(STACK,TELNET,FTP) will be assumed.

If IUCV is in your list of applications (alone or with STACK), you must also
specify the VMCF subsystem ID in the VMCFNAME keyword, or accept its
default.

Note: The PRFX= JCL parameter is deprecated, and may not be available in a
subsequent release of the product. It is suggested that you omit this parameter
from your JCL, and use IFSPARM APPLICATIONS to specify which applications
you want to run.

If the subsystem is being warm-started (that is, if it has been up since the last IPL,
and its last stop was not done with a P CLEAR), the APPLICATIONS keyword
values will be cumulative. Any applications available during the last run of the
product will be continue to be available.

Alias: APPS.

Default: Depends on usage of PRFX=. See above.

Customizing Address Space Operations (IJTCFGxx) 2–3

The IFSPARM Statement

ARMELEMENT (name) Specifies the ARM element name to be assigned to the address space. It may
contain the characters A-Z, 0-9, $, #, @, and _ (underscore). It may not begin with
a number, the characters A-I, or the string SYS.

 The special value “NONE” indicates that the address space is not to make itself
eligible for automatic restart by ARM.

 Default: NONE.

DATASPACESIZE (size)

Specifies the number of megabytes to allocate for a trace data space. This is valid
only for a trace address space.

Default: 128.

INTERNALIUCV | NOINTERNALIUCV

Specifies that IUCV services are to run within the stack address space if desired.
Note that running IUCV internally provides improved performance and easier
debugging. You must also specify the VMCF subsystem ID on the VMCFNAME
keyword.

Note: These keywords are deprecated, and may not be available in a subsequent
release of the product. It is recommended that you use the APPS(IUCV) keyword
to specify how you want IUCV to run.

Default: NOINTERNALIUCV.

MAXSTGPCT (below, above)

Specifies the upper limit of storage usage above and below the 16 MB line when
further connections will be stopped.

Ranges: Below: 50 - 95; Above: 50 - 95.

Default: (90, 75).

PROMPT | NOPROMPT

Specifies whether to prompt to issue message T00IJ13R, which requires a reply,
before shutting down the address space.

Default: PROMPT.

2–4 Customization Guide

The IFSPARM Statement

SECONDARYNAME (subsys_name)

Specifies the VMCF subsystem name. See VMCFNAME for more information.

SECONDARYNAME is an alias for VMCFNAME.

Note: Valid only for an IUCV address space.

TIMEZONE (ATLANTIC | EASTERN | CENTRAL | MOUNTAIN | PACIFIC | char hours)

Specifies the local time zone or a character (that you specify) and the number of
hours before GMT (Greenwich Mean Time).

 Note: If your time zone is ahead of GMT, specify a negative value for hours. For
example: TIMEZONE(A -9).

Default: EASTERN.

TIMER (interval) Specifies the time interval for a timer interrupt. This specifies the resolution for
timers used in this address space.

interval is in 0.01 seconds.

Range is 1 - 99.

Default: 10.

TRACENAME (name) Specifies the subsystem name of the component trace subsystem.

 Default: ACTR.

VMCFNAME (subsys_name)

Specifies the subsystem identifier used by IUCV or HPNS.

subsys_name is a one- to four-character string, which, if not specified, defaults to
the string VMCF.

The VMCF subsystem name must be different from the subsystem name defined
as the UNIQ parameter on the execute statement in the startup JCL. In other
words, it must not be the same as the subsystem name for Unicenter TCPaccess.
Subsystem blocks for subsystem subsys_name will be allocated.

Customizing Address Space Operations (IJTCFGxx) 2–5

The IFSPARM Statement

Note: Although the IBM TCP/IP stack no longer supports IUCV, it still requires
a VMCF name of VMCF for such functions as PING and TRACERTE. Therefore,
if you are running in such an environment, you must specify a different VMCF
name for Unicenter TCPaccess. Also, if you are running multiple Unicenter
TCPaccess stacks and turn on INTERNALIUCV for more than one stack, each
VMCFNAME subsystem name must be unique. Tasks wishing to use the
Unicenter TCPaccess IUCV interface must also specify the new VMCF name. If
this is not possible, run usermod MU1IUCV to change the name. MU1IUCV is
found in the SAMP library.

VMCFNAME is an alias for SECONDARYNAME.

Default: VMCF.

VSREPORT (interval) | NOVSREPORT

Specifies whether to run the virtual storage report program. It produces a
message about virtual storage usage after the specified time to the T01LOG DD
statement. Interval specifies how often, in minutes, message is to be sent to the
account log. The default is 5 minutes, with a maximum of 1439 minutes and a
minimum of 1 minute allowed. Note that if VSREPORT is enabled then it is also
necessary to enable the logging of 'IFS' component 'S' statistics messages by
specifying a logging option that includes (IF,S) at the minimum. Further details
about the PRINT logging options can be found in Controlling Message Logging.

Default: NOVSREPORT.

IFSPARM Usage Notes

Timing Services The IFS timing service, ITIME, allows interval timing to occur in modes other
than primary task mode. The heart of the timing service is a fixed interval timer
DIE that schedules SRBs in response to timers expiring.

Each timer is capable of tracking eight separate intervals. When the interval time
expires, either an exit can be driven or an ECB posted.

The time interval (TIMER) for the DIE is configurable and has a range of 0.1 to 1
second. The time interval is specified in IJTCFG00.

Note: Specifying a large interval decrease timer resolution. Specifying a very
small interval increases timer overhead.

2–6 Customization Guide

Controlling Message Logging

Setting the Time Zone To set the time zone for your system, specify your choice on the IFSPARM
statement with the TIMEZONE parameter. For example, to set the time zone to
Eastern Standard Time:
IFSPARM TIMEZONE (EASTERN)

Setting the GTF ID To set the Generalized Trace Facility (GTF) identification value for Unicenter
TCPaccess, specify the value on the IFSPARM GTFID statement. For example,
to set the value as 17:
IFSPARM GTFID 17

Controlling Message Logging
The LOGGING statement in IJTCFGxx specifies the filtering for both print and
console messages. Messages are filtered by component and level within
component. For instance, specifying:
LOGGING PRINT((TC,RFEWISDT)) WTO((TC,FE))

Prints all TCP messages, but only issues operator messages for fatal and error
type TCP messages. Messages for other components are issued at their default
levels for both print and operator messages.

The LOGGING statement also controls the spin attributes of the SYSOUT data
set and the console routing codes of messages issued by Unicenter TCPaccess.

LOGGING Statement
LOGGING [CLASS (class)]
 [DEST (destination)]
 [FORMS (name)]
 [PRINT ((subparameter) [, (subparameter) [, ...]])]
 [(list)]
 [SPIN (LINES (lines) | MINUTES (minutes) | SYNC) | NOSPIN]
 [WRITER (name)]
 [WTO ((subparameter) [, (subparameter) [, ...]])]

CLASS (class) Specifies the SYSOUT class.

Default: Class specified as SOUT= keyword of PARM field.

DEST (destination) Specifies the SYSOUT destination.

Default: No destination.

Customizing Address Space Operations (IJTCFGxx) 2–7

Controlling Message Logging

FORMS(name) Specifies the print form. (Corresponds to FORMS= on the T01LOG DD
statement.)

Default: None.

PRINT (subparameter) Subparameters are processed left to right.
Valid values:

ALL PRINT all messages, all types

NONE PRINT no messages

(ALL,types PRINT given types for all components

(component,ALL PRINT all messages for given component

(component,NONE PRINT no messages for given component
 (component,types

PRINT given messages for given component

See Component and Message Type Definitions for component and type
specifications and defaults.

ROUTCDE (list) Specifies the MVS routing codes for console messages. list can be one or more
valid MVS routing codes, separated by commas. Routing code ranges can be
specified by separating them with a colon.

 IFSPARM LOGGING ROUTECDE(2)
 IFSPARM LOGGING ROUTCDE(3,4,8:11)
 IFSPARM LOGGING ROUTCDE(9:11)

Range: 1-16.

Default: No routing code.

This means console messages are routed according to the defaults specified in the
MVS SYSGEN. SPIN (LINES (lines) | MINUTES (minutes) | SYNC) |
NOSPIN

 Determines when the log file is closed and reopened.

LINES The number of lines in the log to trigger the spin. The
maximum number of lines that can be specified is
2,000,000,000.

MINUTES Number of minutes. The maximum number of minutes that
can be specified is 357,913.

 TIME is an alias for MINUTES.

2–8 Customization Guide

Controlling Message Logging

SYNC Specifying SYNC with a MINUTES parameter causes a
SPIN on the next occurrence of the interval synchronized to
the previous midnight.

 Specifying SYNC without a MINUTES parameter causes a
SPIN every hour on the hour.

Default: NOSPIN.

WRITER(name) Specifies the member name of an installation-written program in the system
library that the external writer loads to write the output data set. (Corresponds to
WRITER= on the T01LOG DD statement.)

 Note: Do not code INTRDR or STDWTR (and for JES3, NJEWTR) as the writer
name. These names are reserved for JES.

WTO ((subparameter) [, (subparameter) [, ...]])

Subparameters are processed left to right. Valid values:

ALL WTO all messages, all types.

NONE WTO no messages.

ALL,types WTO given types for all components.

component,ALL WTO all messages for given component.

component,NONE WTO no messages for given component.

component,types WTO given messages for given component.
The LOGGING command has a logical grouping of keywords that control
SYSOUT attributes and when the log is spun. This makes the command easier to
use, in that you do not have to specify all of the keywords for an action, as shown
in the following table.

Keywords
Specified

Action

All The LOGGING command will change all of the attributes as
specified.

Some The specified attributes are changed, but the remaining
attributes of the grouped attributes are set to the default.

None None of the attributes of the group will be changed, and any
previous attributes will be carried forward.

Customizing Address Space Operations (IJTCFGxx) 2–9

Controlling Message Logging

The SYSOUT attributes that are grouped are:

■ CLASS

■ DEST

■ FORM

■ WRITER

The SPIN attributes that are grouped are:

■ LINES

■ MINUTES

■ SYNC

Note: The NOW keyword is not associated with LINES, MINUTES, and SYNC.

The PRINT and WTO keywords are separate from each other, and from all the
rest.

You will find usage examples for grouped keywords in Examples of Logging.

Component and Message Type Definitions

The Component Names and Message Defaults Table displays the WTO and
PRINT components and their message type defaults, according to message
destination. Message type is listed in the table and is specified as:

R Response

F Fatal

E Error

W Warning

I Informational

S Statistics

D Debugging

T Trace

2–10 Customization Guide

Controlling Message Logging

The following table lists component names and message defaults.

Message Description Print Default
Message
Level

Console Default
Message Level

AP API Support RFEWI RF

CF Configuration RFEWI RFEW

CO Commutator RFEWI RFE

DS Data space RFEWI RFEWI

DN Domain Name Resolver RFEWI RFEW

EX Exit Interface RFEWI RFEWI

GD GateD RFEWI RFEWI

IF IFS RFEWI RFEWI

IJ IJT Job Step Task RFEWI RFEWI

IP IP Internet Layer RFEWI RF

IU IUCV Transport RFEWI RFEWI

LL Link Layer RFEWIS RFEWI

NT Netstat RFEWI RFEWI

OE UNIX System Services
(formerly OpenEdition)

RFEWI RFEWI

PM PortMapper Application RFEWI RFEWI

RT TelnetRTM RFEWI RFEWI

SF Server FTP Application RFEWI RF

SM SMTP Application RFEWI RF

SN SNMP Application RFEWI RF

SO Socket API Layer RFEWI RFEWI

ST Server Telnet Application RFEWI RF

S4 Spool#4 Application RFEWI RF

TC Transport (TCP, UDP, RAW)
Layer

RFEWI RF

TE Telnet Application RFEWI RF

TG Telnet Character Generator RFEWI RF

TR Trace Support RFEWI RFEWI

Customizing Address Space Operations (IJTCFGxx) 2–11

Controlling Message Logging

Message Description Print Default
Message
Level

Console Default
Message Level

UD Server UDP Application RFEWI RF

UM User SMTP Application RFEWI RF

US USPOOL Application RFEWI RF

VT VTAMAPPL Application RFEWI RF

XL XLI (Assembler TLI) Transport RFEWI RF

Logging Examples

Example 1 To Write to the Operator (WTO) only messages for the IF component and type
Debug, Error, Warning, and Informational messages for the IJ component, use
this syntax:
WTO(NONE,(IF,ALL),(IJ,DEWI))

Example 2 To print all type Debug and Error messages, but not anything for the SO
component:
PRINT((ALL,DE),(SO,NONE))

Example 3 To send everything to Write to Operator:
WTO(ALL)

Example 4 To print nothing:

PRINT(NONE)

Note: Parameters are processed left to right, as an example:
PRINT(ALL,(IJ,I),NONE)

The final NONE subparameter overrides the ones before it.

Here are some examples of the usage of grouped keywords.

Example 5 Print all messages; leave WTO, SYSOUT, and spin unchanged:
LOGGING PRINT(ALL)

Example 6 WTO all messages; leave PRINT, SYSOUT, and spin unchanged:
LOGGING WTO(ALL)

Example 7 Reset SYSOUT class to X; defaults DEST, FORM, and WRITER, and leave
remaining keywords unchanged.
LOGGING CLASS(X)

2–12 Customization Guide

Setting SMF Parameters

Example 8 Spin the log now; leave all specifications unchanged:
LOGGING SPIN NOW

Example 9 Reset spin to every 5000 lines or 60 minutes, whichever comes first; leave
remaining keywords unchanged:
LOGGING SPIN(LINES(5000) MINUTES(60))

Example 10 Print and WTO all messages, reset SYSOUT writer to TOLSTOY and defaults
CLASS, DEST, and FORM. Also reset spin to every hour on the hour, ignoring
line count, and spin the log now:
LOGGING PRINT(ALL) WTO(ALL) WRITER(TOLSTOY) SPIN(SYNC) NOW

Setting SMF Parameters
The TCP/IP stack generates SMF records at various processing points, such as
connection establishment, connection termination, connection rejection, and
failed connection attempts.

The INTERVAL parameter of the SMF statement determines the frequency (in
minutes) with which periodic SMF statistics records, such as virtual storage
utilization and driver statistics, are written.

The available record subtypes are described in the System Management Guide.

You can set your SMF parameters using the SMF statement in IJTCFGxx.

Customizing Address Space Operations (IJTCFGxx) 2–13

Setting SMF Parameters

SMF Statement Syntax
SMF [TYPE (number)]
 [SUBTYPE (subtypes) | ALL | NONE]
 [INTERVAL (minutes)]

TYPE (number) Specifies the SMF record type to be assigned to records generated by Unicenter
TCPaccess. Any number from 128 through 255 not in use by your installation is
available.

 Default: 130.

SUBTYPE (subtypes) | ALL | NONE

 Specifies record subtypes.

subtypes is the list of subtype numbers. The available record subtypes are
described in the System Management Guide. Use a comma (,) to separate subtypes,
a colon (:) to specify a range of subtypes.

ALL | NONE specifies if SMF recording is performed.

ALL specifies that all Unicenter TCPaccess SMF record subtypes be generated.

NONE specifies no SMF recording is performed.

Example 1 This SMF statement causes SMF record type 135 to be used, and subtypes 20-23,
80, and 150-152 to be written. The subtype 80 (virtual storage statistics) record is
written every 20 minutes.

SMF TYPE(135) SUBTYPE(20:23,80,150:152) INTERVAL(20)

Example 2 Use commas to define multiple subtypes:

SMF TYPE(130) SUBTYPE(20,21,22,23)

Default: NONE.

INTERVAL (minutes) Specifies, in minutes, the time interval at which periodic SMF records are
written. For more information, refer to the System Management Guide.

Subtype 80 and 100 records are interval driven. All other types are event driven.
If subtype 80 or 100 records are chosen, but no INTERVAL is configured, a
default INTERVAL of 15 minutes is used.

Range: 1 -1439 minutes.

Default: Zero.

2–14 Customization Guide

Setting Exit Points

SMF Usage Notes

Record Subtypes The absence of an SMF statement in the configuration indicates that no SMF
recording is performed.

SMF Examples The following examples show of the SMF statement usage :
SMF TYPE(189) ALL
SMF TYPE(241) SUBTYPE(21)
SMF NONE

Setting Exit Points
Use the EXIT statement to define global user exits to Unicenter TCPaccess. Each
EXIT statement defines an exit program to Unicenter TCPaccess, and specifies at
which exit point(s) the program will be invoked.

In addition to the exit points listed below, each exit program receives control at
the INIT and TERM exit points. For more information on the usage of the Exit
facility, read the Planning Guide.
EXIT PROGRAM (program_name)
 [PARM (string) ,]
 [EWASIZE (size) ,]
 [FTPCMND | NOFTPCMND | AUTOFTPCMND,]
 [FTPLOGIN | NOFTPLOGIN | AUTOFTPLOGIN,]
 [FTPRSRCE | NOFTPRSRCE | AUTOFTPRSRCE,]
 [LOG | NOLOG | AUTOLOG,]
 [TCPBIND | NOTCPBIND | AUTOTCPBIND,]
 [SYNRCVD | NOSYSRCVD | AUTOSYSRCVD,]
 [SENDSYN | NOSENDSYN | AUTOSENDSYN,]
 [SMF | NOSMF | AUTOSMF,]
 [TCPESTAB | NOTCPESTAB | AUTOTCPESTAB,]
 [TCPCLOSE | NOTCPCLOSE | AUTOTCPCLOSE,]
 [UDPBIND | NOUDPBIND | AUTOUDPBIND,]
 [UDPSEND | NOUDPSEND | AUTOUDPSEND,]
 [UDPRECV | NOUDPRECV | AUTOUDPRECV,]
 [RAWSOCK | NORAWSOCK | AUTORAWSOCK,]
 [RAWSEND | NORAWSEND | AUTORAWSEND,]
 [RAWRECV | NORAWRECV | AUTORAWRECV]
 [VTAMBIND | NOVTAMBIND | AUTOVTAMBIND]

PROGRAM (program_name)

Identifies the name of the exit program to invoke. This program must be made
available to Unicenter TCPaccess at startup.

PARM (string) Any desired string of data. This string is passed, uninterpreted, to the program at
the INIT exit point.

EWASIZE (size) Specifies the size of the Exit Work Area. For a full description see the section
"Exit Work Area" in the chapter on "User Exits" in the Planning Guide.

Customizing Address Space Operations (IJTCFGxx) 2–15

Setting Exit Points

FTPCMND | NOFTPCMND | AUTOFTPCMND

Specifies whether the FTPCMND exit point is called (FTPCMND) or not
(NOFTPCMND), or whether it is left to the INIT exit to specify
(AUTOFTPCMND).

Default: AUTOFTPCMND.

FTPLOGIN | NOFTPLOGIN | AUTOFTPLOGIN

 Specifies whether the FTPLOGIN exit point is called (FTPLOGIN) or not
(NOFTPLOGIN), or whether it is left to the INIT exit to specify
(AUTOFTPLOGIN).

Default: AUTOFTPLOGIN.

FTPRSRCE | NOFTPRSRCE | AUTOFTPRSRCE

Specifies whether the FTPRSRCE exit point is called (FTPRSRCE) or not
(NOFTPRSRCE), or whether it is left to the INIT exit to specify
(AUTOFTPRSRCE).

Default: AUTOFTPRSRCE.

LOG | NOLOG | AUTOLOG

 Specifies whether the LOG exit point is called (LOG) or not (NOLOG), or
whether it is left to the INIT exit to specify (AUTOLOG).

 Default: AUTOLOG.

TCPBIND | NOTCPBIND | AUTOTCPBIND

 Specifies whether the TCPBIND exit point is called (TCPBIND) or not
(NOTCPBIND), or whether it is left to the INIT exit to specify (AUTOTCPBIND).

Default: AUTOTCPBIND.

SYNRCVD | NOSYSRCVD | AUTOSYSRCVD

Specifies whether the SYNRCVD exit point will be called (SYNRCVD) or not
(NOSYNRCVD), or whether it will be left to the INIT exit to specify
(AUTSYNRCVD).

Default: AUTOSYNRCVD

2–16 Customization Guide

Setting Exit Points

SENDSYN | NOSENDSYN | AUTOSENDSYN

 Specifies whether the SENDSYN exit point is called (SENDSYN) or not
(NOSENDSYN), or whether it is left to the INIT exit to specify
(AUTOSENDSYN).

Default: AUTOSENDSYN

SMF | NOSMF | AUTOSMF

Specifies whether the SMFEXIT exit is called (SMF) or not (NOSMF), or whether
it is left to the INIT exit to specify (AUTOSMF).

Note: A sample SMFEXIT is provided in the SAMP data set.

Default: AUTOSMF

TCPESTAB | NOTCPESTAB | AUTOTCPESTAB

 Specifies whether the TCPESTAB exit point is called (TCPESTAB) or not
(NOTCPESTAB), or whether it is left to the INIT exit to specify
(AUTOTCPESTAB).

Default: AUTOTCPESTAB

TCPCLOSE | NOTCPCLOSE | AUTOTCPCLOSE

 Specifies whether the TCPCLOSE exit point is called (TCPCLOSE) or not
(NOTCPCLOSE), or whether it is left to the INIT exit to specify
(AUTOTCPCLOSE).

Default: AUTOTCPCLOSE

UDPBIND | NOUDPBIND | AUTOUDPBIND

Specifies whether the UDPBIND exit point is called (UDPBIND) or not
(NOUDPBIND), or whether it is left to the INIT exit to specify
(AUTOUDPBIND).

Default: AUTOUDPBIND

UDPSEND | NOUDPSEND | AUTOUDPSEND

Specifies whether the UDPSEND exit point is called (UDPUDPSEND) or not
(NOUDPSEND), or whether it is left to the INIT exit to specify
(AUTOUDPSEND).

Default: AUTOUDPSEND.

Customizing Address Space Operations (IJTCFGxx) 2–17

Setting Exit Points

UDPRECV | NOUDPRECV | AUTOUDPRECV

Specifies whether the UDPRECV exit point is called (UDPRECV) or not
(NOUDPRECV), or whether it is left to the INIT exit to specify
(AUTOUDPRECV).

Default: AUTOUDPRECV.

RAWSOCK | NORAWSOCK | AUTORAWSOCK

Specifies whether the RAWSOCK exit point is called (RAWSOCK) or not
(NORAWSOCK), or whether it is left to the INIT exit to specify
(AUTORAWSOCK).

Default: AUTORAWSOCK.

RAWSEND | NORAWSEND | AUTORAWSEND

Specifies whether the RAWSEND exit point is called (RAWSEND) or not
(NORAWSEND), or whether it is left to the INIT exit to specify
(AUTORAWSEND).

Default: AUTORAWSEND.

RAWRECV | NORAWRECV | AUTORAWRECV

Specifies whether the RAWRECV exit point is called (RAWRECV) or not
(NORAWRECV), or whether it is left to the INIT exit to specify
(AUTORAWRECV).

Default: AUTORAWRECV.

VTAMBIND | NOVTAMBIND | AUTOVTAMBIND

Specifies whether the VTAMBIND exit point is called (VTAMBIND) or not
(NOVTAMBIND), or whether it is left to the INIT exit to specify
(AUTOVTAMBIND).

Default: AUTOVTAMBIND.

2–18 Customization Guide

Security Settings

Security Settings
This section describes how to configure the SECURITY statement.

This is the syntax for the Security statement.

Security Statement Syntax
SECURITY CLASS (class)
 PROFILE (profile)
 REQID (id)
 APPLNAME (name)
 SUBSYS (name)
 XSEC (option1 option2.. .)

CLASS (class) Specifies the class name to use for command authorization.

Default for RACF: AC#CMD.

Default for ACF2: AC#CMD.

Default for RTSS: UR1.

Default for ALRT: AC#CMD.

PROFILE (profile) Specifies the profile name configured in the security product.

Default: SYSTRAN.

REQID (id) Specifies the ID of the caller issuing the security call.

Default for RACF: blanks.

Default for ACF2: ACSECPC.

Default for RTSS: blanks.

Default for ALRT: ACSECPC.

APPLNAME (name) Specifies the application name of the caller issuing the security call.

Default for RACF: blanks.

Default for ACF2: blanks.

Default for RTSS: blanks.

Default for ALRT: taken from ICSLPID.

Customizing Address Space Operations (IJTCFGxx) 2–19

Security Settings

SUBSYS (name) Specifies the security subsystem name.

Default for RACF: blanks.

Default for ACF2: taken from ICSLPID.

Default for RTSS: blanks.

Default for ALRT: taken from ICSLPID.

XSEC (option1 option2 ...)

ACEE | NOACEE Monitors ACEE activity.

ACSECPC | NOACSECPC
Monitors entry to the security call module that performs all
security checking within Unicenter TCPaccess.

COMMAND | NOCOMMAND
Monitors command authorization calls. The COMMAND
option aids in the debugging of COMMAND security
problems within Unicenter TCPaccess.

DATASET | NODATASET
Monitors data set authorization calls. The DATASET
option aids in the debugging of DATASET security
problems within Unicenter TCPaccess.

GLBLACT | NOGLBLACT
Activates or suppresses ALL security calls. If this option is
turned off, Unicenter TCPaccess does no security checking.
This could lead to serious problems in an ACF2
environment. Do not turn this option off except at the
direction of support personnel.

GLBLCMD | NOGLBLCMD
Activates or suppresses security calls for command
authorization. Turns on or off all calls to the external
security interface module (ACSECPC) for COMMAND
security.

LOGOFF | NOLOGOFF
Monitors departure from the system. The LOGOFF option
aids in the debugging of sign-off security problems within
Unicenter TCPaccess.

2–20 Customization Guide

POOLDEF Settings

LOGON | NOLOGON
Monitors attempts to gain entry to the system. The LOGON
option aids in the debugging of signon security problems
within Unicenter TCPaccess.

TERMID | NOTERMID
TERMID tells the Unicenter TCPaccess security interface to
place a terminal ID into the Terminal field of the signon
parameter list for any user attempting a signon to
Unicenter TCPaccess. The terminal ID passed during
signon attempts will be either the remote IP address of the
originating host for the user, or a VTAM APPL LU name.
NOTERMID tells the Unicenter TCPaccess security
interface to not use the Terminal field in the signon
parameter list during signon attempts.

Default: (NOACEE NOACSECPC NOCOMMAND NODATASET NOLOGON
NOLOGOFF NOTERMID)

 POOLDEF Settings
The POOLDEF statement is used to define pools of control blocks necessary to
run the API and put limits on API usage. Because the API is used internally by
the domain name resolver, it must be set up properly for Unicenter TCPaccess to
run. The pool definitions specify:

 ■ An initial amount

■ An expansion amount

■ A minimum amount to limit contraction

You can adjust these numbers to minimize expansion and contraction and
improve efficiency. For additional information, refer to the POOLDEF Statement
Syntax in the chapter “Defining Control Block Pools (POOLDEF Statement).”

Customizing Address Space Operations (IJTCFGxx) 2–21

Chapter

3 Network Configuration

This chapter describes the parameters to set up your network interface. These
parameters are in the TCPCFGxx member of the PARM data set. Parameters for
modifying protocol configuration are also in this file, but are described in the
chapter “TCP, UDP, RAW and IP Protocol Configuration (TCPCFGxx).”

The following information is discussed in this chapter:

■ TCP Stack Configuration Member (TCPCFGxx)—Describes network
interface and protocol-specific information

■ Defining Physical Medium—Describes how to use the MEDIA statement

■ Defining IP Addressing - NETWORK Statement—Describes how to use the
NETWORK statement

■ Driver Statements—Describes how hardware statements are specified

■ CDLC Statement—Describes how to configure using the CDLC protocol

■ CETI Driver Configuration—Describes how configure to use CETI devices

■ CLAW Driver Configuration—Describes how to use the CLAW driver

■ CTC Driver Configuration—Describes how to use the Channel-to-Channel
driver

■ CTC Driver Configuration—Describes how to interface to a HYPERchannel
network

■ LCS Configuration Parameters—Describes how to use a 3172 Interconnect
Controller and the IBM 8232 LAN Channel Station and how to configure
devices using the 8232/3172 standard such as OSA, ELC2 or ELC3 running
8232 emulation, 2216, and Netshuttle

■ XCF Driver Configuration—Describes how to use an XCF (Cross-
System Coupling Facility) interface

■ 3172 and 8232 Configuration—Describes how to define the link level
network adapter which uses the 3172 or 8232 standard, such as OSA, ELC2
or ELC3 running 8232 emulation, 2216, and Netshuttle

Network Configuration 3–1

TCP Stack Configuration Member (TCPCFGxx)

■ ARP Configuration—Describes how to configure for address resolution
protocol

■ Defining Application Dynamic VIPA Subnets—Describes how to use the
VIPANET statement to define a subnet in which requests activate a VIPA via
BIND or SIOCSVIPA IOCTL are honored

TCP Stack Configuration Member (TCPCFGxx)
The TCPCFGxx member in the PARM data set specifies the main configuration
parameters for the TCP stack.

Generally, the MEDIA statement is the first statement of TCPCFGxx. It defines
the physical medium to which Unicenter TCPaccess will be physically attached.
The MEDIA statement is followed by one or more NETWORK statements, zero
or more driver statements (CETI, CLAW, HYPER, LINK), and zero or more ARP
statements.

Multiple MEDIA statements are allowed for multihomed configurations.
However, each must be followed by its own NETWORK, driver and ARP
statements.

The NETWORK statement defines the IP addressing of the media. If a subnets-
are-local configuration is desired, multiple NETWORK statements may follow
the MEDIA statement. Multiple Virtual IP Addresses are defined by specifying a
MEDIA VIRTUAL statement, followed by one or more NETWORK statements.
IP address 127.0.0.1 is reserved for loopback and cannot be coded.

The driver statements follow the MEDIA statement and may be before or after
the NETWORK statements. Driver statements are not permitted if the Media
type is Virtual. Multiple driver statements are permitted if multiplexing is
desired. The LINK statement requires a prior LCS statement. The LCS statement
can appear anywhere in TCPCFGxx prior to the LINK statement.

ARP statements follow the driver statements if static ARP resolution is used on
this Media. No ARP statements are required if dynamic ARP is used
(recommended).

ROUTE statements can be placed anywhere after the MEDIA statement, or for
simplicity, all ROUTE statements can be grouped together if the MEDIANAME
keyword is specified on each ROUTE statement.

MEDIANAME links MEDIA, NETWORK, driver, ARP and ROUTE statements.
If MEDIANAME is not used, statements are determined by their placement in
the TCPCFGxx member. See MEDIA Statement Usage Notes for more
information about using MEDIANAME.

3–2 Customization Guide

Defining Stack Unique Settings—SYSUNIQ Statement

Defining Stack Unique Settings—SYSUNIQ Statement
The SYSUNIQ statement defines the stack unique setting. It is optional and if not
defined, the default value described will be used. The SYSNAME keyword can
be used to specify the value returned by a UNIX System Services (formerly Open
Edition) gethost() function call.

SYSUNIQ Statement
SYSUNIQ
[SYSNAME(host_name)

SYSNAME (host_name) Specifies the value one-to eight-character value to be returned when a UNIX
System Services gethost() function call is done.

Default: The one-to eight-character value defined in SYS1.PARMLIB(IEASYSnn)
SYSNAME() parameter.

SYSUNIQ Statement Usage Notes

Consider these usage notes when using the SYSUNIQ statement:

UNIX System Services
gethost() function
returned value

By default, a UNIX System Services gethost() function call will return the value
obtained from the SYS1.PARMLIB(IEASYSnn) SYSNAME=system_name. This can
lead to problems when either the desired host_name does not match the system
name, or when multiple stacks are running which should each have unique
host_name values.

The SYSUNIQ statement defines the value returned when a UNIX System
Services gethost() function call is made. Applications that use the gethost()
function call will subsequently expect that this host_name can be resolved by
domain name services. Therefore, it is important that the domain name
resolution (DNR) be configured to reflect this host_name value.

OE gethost() function
returned value

By default, an OE gethost() function call returns the value obtained from the
SYS1.PARMLIB(IEASYSnn) SYSNAME=system_name. This can lead to problems
when either the desired host_name does not match the system name; or when
multiple stacks are running where each should have unique host_name values.

The SYSUNIQ statement defines the value returned when an OE gethost()
function call is done. Applications that use the gethost() function call will
subsequently expect that this host_name can be resolved by domain name
services. Thus it is important that the domain name resolution (DNR) configured
to reflect this host_name value.

Network Configuration 3–3

Defining Physical Medium

SYSUNIQ Example
The following is an example of the usage of the SYSUNIQ statement:
SYSUNIQ

SYSNAME(MYHOST)

Defining Physical Medium
The MEDIA statement defines a physical medium to which Unicenter TCPaccess
is attached. The MEDIA statement is followed by one or more NETWORK
statements, zero or more driver statements (CETI, CLAW, HYPER, and LINK),
and zero or more ARP statements.

Multiple MEDIA statements are allowed for multihomed configurations;
however, each must be followed by its own NETWORK, driver, and ARP
statements.

MEDIA Statement Syntax
MEDIA NAME (media_name)
 [ARPTIMEOUT (router_time host_time)]

 [ETHERNET | VIRTUAL | CLUSTER | TOKEN4 | TOKEN16 | FDDI | HYPERCHANNEL |
 CLAW | CDLC | CTC | XCF]
 [CHECKSUM | NOCHECKSUM | HOSTCKSUM | OFFLOADCKSUM | NOASSIST | ASSIST]
 [ICMPREDIRECT (network_option host_option)]
 [IDLENET (sec count)]
 [MSSDEF (mss_value)]
 [MSSOPT (ALWAYS | NET | NEVER | SUBNET]
 [MTU (mtu_size)]

NAME (media_name) Specifies a name to associate with this media. For VIRTUAL, a name of
LOOPBACK can be specified.

Note: The media name DYNVIPA is reserved and cannot be used as an
installation-defined media name.

3–4 Customization Guide

Defining Physical Medium

ARPTIMEOUT (router_time host_time)

Specifies timeouts for the address resolution table (ARP).

router_time Specifies the number of seconds between ARP attempts for
an IP router. The valid range is 1 to 255 seconds.

 Default: 10.

host_time Specifies the time in seconds that an ARP cache entry is
considered valid. The valid range is 1 to 65535 minutes.

 Default: 1800.

ETHERNET | VIRTUAL | CLUSTER | TOKEN4 | TOKEN16 | FDDI | HYPERCHANNEL | CLAW |
CDLC | XCF

Specifies the type of network medium.

Specify ETHERNET for 10 MB/sec or 100 MB/sec ethernet. CLUSTER is used for
cluster sysplex load balancing support

Default: ETHERNET.

CHECKSUM | NOCHECKSUM | HOSTCKSUM | OFFLOADCKSUM | NOASSIST | ASSIST

Specifies whether checksumming should be performed on the host or, if it is
offloaded, to devices that can perform checksum assistance.

CHECKSUM, HOSTCKSUM, and NOASSIST all mean that checksumming for
TCP datagrams is performed by the host software.

NOCHECKSUM, OFFLOADCKSUM, and ASSIST all mean that check summing
for TCP packets is performed in the network interface device.

Default: CHECKSUM.

Network Configuration 3–5

Defining Physical Medium

ICMPREDIRECT (network_option host_option)

Specifies how Unicenter TCPaccess handles ICMP network and host redirect
messages.

network_option must be one of the following:

HONOR Specifies that Unicenter TCPaccess is to honor ICMP
network redirect messages as before.

IGNORE Specifies that Unicenter TCPaccess is to ignore ICMP
network redirect messages entirely.

HOST Specifies that Unicenter TCPaccess is to treat ICMP
network redirect messages identically to an ICMP host
redirect message.

Default: HONOR.

host_option must be one of the following:

HONOR Specifies that Unicenter TCPaccess is to honor ICMP host
redirect messages as before.

IGNORE Specifies that Unicenter TCPaccess is to ignore ICMP host
redirect messages entirely.

 Default: HONOR.

 Note: If host _option of IGNORE is specified then
network_option must also be ignored. If not, then the
host_option is reset to HONOR

IDLENET (sec count) Specifies network outage detection thresholds. If no network activity is detected
during sec seconds, the network is considered idle, and sampling of network
components begins.

count Specifies the number of network components to sample for
presence on the network. If any respond, the network is
considered intact.

Network idle detection is available only for LNILCS and LNICETI
configurations.

Default: (300 10) if fault tolerance is authorized.
 (0 0) if fault tolerance is not authorized.

3–6 Customization Guide

Defining Physical Medium

MSSDEF (number) Specifies default MTU (Maximum Transmission Unit) on which the maximum
TCP segment size is based when the local network MTU cannot be used (for
example, MSSOPT(NET) and destination is not on the same network).

Note: MSSDEF must not exceed the MTU for local network, so the valid range is
576:MTU.

Refer to the MTU parameter below and the Maximum Transition Unit in MEDIA
Statement Usage Notes for more information.

Default: MTU.

MSSOPT (NEVER | SUBNET | NET | ALWAYS)

 Specifies when the TCP maximum segment size option is sent.

NEVER Never send the TCP maximum segment size option.

SUBNET Send the TCP maximum segment size option only if the
remote host is on the same subnet as the local host.

NET Send the TCP maximum segment size option only if the
remote host is on the same network as the local host. The
remote host might be on a different subnet.

ALWAYS Always send the TCP maximum segment size option.

Default: NET.

MTU (number) Specifies the maximum transmission unit the destination is capable of receiving.

 The range and default values vary according to media type:

VIRTUAL min=576, max=65535, default=8192

ETHERNET min=576, max=1500, default=1500

4 MB Token Ring min=576, max=2002, default=2002

16 MB Token Ring min=576, max=4352, default=4352

FDDI min=576, max=4352, default=4352

HYPERchannel min=576, max=65535, default=32000

CLAW to RS/6000 min=576, max=65505, default=4096

Network Configuration 3–7

Defining Physical Medium

CLAW to Cisco router
min=576, max=4096, default=409

CDLC min=576, max=60960, default=60960

CTC min=576, max=8192, default=8192

XCF min=576, max=8192, default=8192

MEDIA Statement Usage Notes

Using the MEDIA
Statement in Fault
Tolerant Networks

A typical installation requires only one each of a MEDIA statement, a
NETWORK statement, and a driver statement. For fault tolerance, at a
minimum, you will need multiple driver statements. If you are supporting
multiple network numbers on the same physical medium, you will need
multiple NETWORK statements to indicate this. A MEDIA statement should
correspond to a physical medium such as ethernet, token ring, or FDDI. There
should be one MEDIA statement for each physical medium to which this host is
attached.

By default, NETWORK statements following a MEDIA statement are associated
with that media. This can be overridden with the MEDIANAME keyword, but it
makes the configuration difficult to follow. It is recommended that you keep the
NETWORK statements organized under their related MEDIA statement.

Similarly, driver statements are related to a MEDIA statement, and represent the
physical related interfaces to the related media. By default, driver statements
following a MEDIA statement are associated with that media. As for the
NETWORK statements, this can be overridden with the MEDIANAME keyword,
but it makes the configuration difficult to follow. It is recommended that you
keep your driver statements organized under their related MEDIA statement.

There is no relationship between NETWORK and driver statements. That is, all
drivers under a MEDIA statement can respond to all IP addresses for all the
NETWORK statements related to that media.

3–8 Customization Guide

Defining Physical Medium

Maximum
Transmission Unit

The Maximum Transmission Unit (MTU) that can be transmitted between two
nodes on a local network generally is fixed for the entire network. For
Ethernets, this value is 1500 data bytes excluding the local network header, and
for DDN and ARPANET, this value is fixed at 1007. For HYPERchannel, there is
no limit imposed by the lower-level protocols, and the remote host determines
the MTU by how much it is willing to receive (see ARP statement). FDDI
networks have an MTU of 4352 as well as 16 MB Token Ring networks. Four
MB Token Ring networks have an MTU of 2002.

If the CLAW interface is connecting to an IBM RS/6000, then the maximum size
of the LNI buffer is 4096. However, IBM allows an MTU of up to 65505 before the
packet is fragmented. However, if the CLAW interface is connecting to a Cisco
router and the PACKED feature is available, then the maximum size of the LNI
buffer is 65535. However, Cisco only allows an MTU of up to 4096. Then,
multiple packets are collected into a single LNI buffer. This provides higher
throughput, because each channel transfer takes about 200 microseconds. Thus,
one 200 microsecond transfer can send as much data as 16 (total=3200
microseconds.

Maximizing
Throughput

Throughput can be maximized by sending data packets that are as large as the
MTU for the local network. TCP uses the Maximum Segment Size (MSS) option
to regulate the size of TCP segments transmitted on a TCP connection, which in
turn determines the maximum size of packets generated by IP. Generally,
sending the largest TCP segment possible is more efficient because the total
number of segments transmitted is reduced. However, if the communicating
hosts are not on the same network (or subnetwork), intervening gateways
might need to fragment the packets, which can be less efficient than sending
smaller segments in the first place

The MSSOPT parameter controls when the local TCP uses the MSS TCP option to
increase the size of TCP segments it is willing to receive (the default is the MTU).
If permitted, TCP increases its receive segment size to a value that lets the remote
TCP send segments that are optimal for the local network and will never
transmit a segment larger than that advertised by the remote TCP.

Next to NEVER, MSSOPT(SUBNET) is the most restrictive option because both
hosts must be on the same subnet. If the network is not a subnet, or all subnets
comprising the local network use the same MTU, or fragmentation is not a
concern, MSSOPT(NET) should be used. Otherwise, use MSSOPT(ALWAYS).

Network Configuration 3–9

Defining Physical Medium

Maximum Receive
Segment Size

The MSSDEF parameter determines what the maximum receive segment size
can be if the MSSOPT parameter does not permit using the optimum value for
the local network. This permits using a value larger than the internet-wide
default and smaller than the MTU for the local network. For example, if several
local area networks are interconnected by a wide area network whose MTU is
smaller than that of the local area networks, MSSDEF should be set to the MTU
of the wide area network. When used with the appropriate MSSOPT parameter,
TCP can use larger segments while avoiding fragmentation.

The MSSDEF value is specified in terms of the IP packet size and not the actual
TCP segment size. In other words, the value specified for MSSDEF should be the
largest network packet, excluding the network header but including the normal
TCP and IP headers that can be generated with a maximum size TCP segment.

CDLC Considerations The 3746-900 unit is configured with a network MTU size, but will override it
with the lowest MTU size it encounters. That MTU size will be applied to
whatever mainframe software will be running next. Therefore, if a small MTU
size is used, that will become the restriction for subsequent IP packet sizes and
may cause problems if fragmentation is not allowed. The CDLC MTU size
should correspond to its network configuration parameter.

3–10 Customization Guide

Defining IP Addressing

Defining IP Addressing
The NETWORK statement defines the IP addressing of the media. If a subnets-
are-local configuration is desired, multiple NETWORK statements may follow
the MEDIA statement. Multiple virtual IP addresses are defined by specifying a
MEDIA VIRTUAL statement, followed by one or more NETWORK statements.
IP address 127.0.0.1 is reserved for loopback and cannot be coded.

NETWORK Statement Syntax
NETWORK IPADDRESS (ip_address)
 [DEST (destination)]
 [MEDIANAME (name)]
 [METRIC (metric)]
 [NETMASK (network_mask)]
 [SUBNETMASK (subnet_mask)]

IPADDRESS (ip_address)

Specifies the full internet host address in standard dot notation (for example.,
128.5.2.17).

Default: None.

DEST (destination) Specifies the remote IP address for point-to-point links.

Default: None.
MEDIANAME (name)

Specifies the MEDIA statement with which this network is associated. The
MEDIANAME field must contain characters and has a maximum length of eight
characters.

Default: The most recent MEDIA statement.

METRIC (metric) Specifies a hop count for this network, for use by routing protocols.

Default: One.
NETMASK (network_mask)

 Specifies the Network mask to use. The network mask is based on the class of the
network.

Default:
Class A - 255.0.0.0
Class B - 255.255.0.0
Class C - 255.255.255.0

Network Configuration 3–11

Defining IP Addressing

SUBNETMASK (subnet_mask)

Specifies the subnet mask in standard dot notation (for example, 255.255.255.0).

Default: Network mask as above.

Network Statement Usage Notes

Consider these usage notes when using the NETWORK statement.

Local Host Name The NETWORK statement defines the local Internet address by which remote
hosts access this host through the local network.

Subnet and Network
Masks

If the local network is a subnet of a larger network, a subnet mask must be
specified with the SUBNET parameter to define which bits of the Internet
address contain the subnet number.

If the network is comprised of multiple Class C networks that share the same
physical medium, the network mask can be shortened to make a single network.

For example, networks

■ 192.130.0.0

■ 192.130.1.0

■ 192.130.2.0

■ 192.130.3.0

can be made to look like a single Class B/C network by specifying a network
mask of 255.255.252.0.

Configuring a Single
LNI to Act as Multiple
Hosts

Unicenter TCPaccess supports multiple NETWORK statements bound to a
single interface. When using this feature, Unicenter TCPaccess can be
configured so that a single LNI can act as multiple hosts, each with a unique IP
address, on the same or different nets or subnets.

Unicenter TCPaccess reports its associated IP address as the address specified on
the first NETWORK statement. Using that LNI Unicenter TCPaccess responds to
ARPs for any NETWORK statement pointing to it, and attempts to use the
correct IP address on ARPs it generates.

3–12 Customization Guide

Defining IP Addressing

Multihomed Example
MEDIA ETHERNET MTU(1500) NAME(HOST1)

 .
 .
 .
 NETWORK IPADDRESS(192.130.0.12)
 SUBNET(255.255.255.0)
 .
 .
 .
 NETWORK IPADDRESS(192.130.1.12)
 SUBNET(255.255.255.0)
 .
 .
 .
 CETI CUTYPE(3762)
 DEVADDR(400)
 .
 .
 .

Multihome/Multiplex

A local network is bound to a particular hardware interface by specifying one or
more driver statements. All NETWORK statements associated with that media
are associated with all drivers for that media.

Multiplexed
Environment Example

MEDIA ETHERNET MTU(1500) NAME(ETHER)
NETWORK IPADDRESS(192.130.0.12) SUBNET(255.255.255.192)
CETI CUTYPE(3762) DEVADDR(400)
LCS NAME(LAN) DEVADDR(500) CUTYPE(3172)
LINK LCSNAME(LAN) ADAPTER(0)

Subnets-Are-Local
and Multiplexed
Environment Example

MEDIA ETHERNET MTU(1500) NAME(ETHER)
NETWORK IPADDRESS(192.130.0.12) SUBNET(255.255.255.192)
NETWORK IPADDRESS(192.130.0.14) SUBNET(255.255.255.192)
CETI CUTYPE(3762) DEVADDR(400)
LCS NAME(LAN) DEVADDR(500) CUTYPE(3172)
LINK LCSNAME(LAN) ADAPTER(0)

Multihomed
Environment Example

MEDIA ETHERNET MTU(1500) NAME(ETHER)
NETWORK IPADDR(192.130.0.12) SUBNET(255.255.255.192)
LCS NAME(LAN) DEVADDR(500) CUTYPE(3172)
LINK LCSNAME(LAN) ADAPTER(0)
MEDIA FDDI MTU(4352) NAME(FIBER)
NETWORK IPADDR(192.130.1.12) SUBNET(255.255.255.192)
LINK LSCNAME(LAN) ADAPTER(1)

If multiple drivers are specified for the local network, all of them are capable of
responding to the same Internet address. In this case, the host is multiplexed
onto the local network. On output, packets are distributed on a round-robin
basis. On input, the load sharing mechanism (if any) is determined by the
network. Multiplexing can be used to increase throughput or to eliminate single
points of failure by providing redundancy.

Network Configuration 3–13

Driver Statements

More than one local network can be defined, each with its own unique internet
address within one Unicenter TCPaccess address space. In addition, the local
networks can use different transmission technologies and have different
characteristics (for example, Ethernet and FDDI). In this case, the host is said to
be multihomed because there are multiple routes to the local host.

NETWORK Example

The following example shows the usage of the NETWORK statement:
NETWORK IPADDRESS(26.131.0.2)
 NETMASK(255.0.0.0)
 SUBNET(0.0.0.0)
 METRIC(1)

Driver Statements
Driver statements follow the NETWORK statements. Driver statements are not
permitted if the MEDIA type is VIRTUAL. Multiple driver statements are
permitted if multiplexing is desired. The LINK statement requires a previous
LCS statement. The LCS statement can appear anywhere in TCPCFGxx prior to
the LINK statement.

CDLC Statement
Sending IP directly to the FEP is more efficient, easier to configure, and yields
higher performance than encapsulating IP datagrams in SNA Path Information
Units (PIUs). IP encapsulation is the approach used in IBM’s SNALINK.

You can use a 3745 FEP to attach channel interfaces directly to an IP network.
The channel interface in this situation is configured in the Network Control
Program (NCP) as a native IP element. The IP channel interface does not fall
under control of VTAM.

Unicenter TCPaccess uses the IBM CDLC protocol to implement support for the
IP channel attachment capability. The 3745 FEP appears as a single device,
operating in half-duplex mode. The CDLC protocol uses a single subchannel in
half-duplex mode.

IP datagrams are passed from an MVS-based IP application over bus-and-tag or
ESCON channels to a 3745 FEP. To TCPaccess, the channel-attached NCP
running native IP support looks like a channel-attached router.

3–14 Customization Guide

CDLC Statement

The 3745 FEP cannot share the same bus-and-tag interface between SNA and IP
traffic to the mainframe. The native IP attachment requires a dedicated 3745
channel adapter. If you are using ESCON with the 3746-900 frame, IP and SNA
traffic can flow over the same channel connection if you create a separate NCP
link station for the IP traffic.

CDLC Statement Syntax

Use the CDLC Statement to configure your CDLC driver.
CDLC DEVADDR (ccuu)
 [IBUF (input_buffer_count)]
 [MEDIANAME (value)]
 [OBUF (output_buffer_count)]
 [RESTART (restart_value)]
 [START | NOSTART | AUTOSTART | NOAUTOSTART]

DEVADDR (ccuu) Specifies the first channel cc and unit number uu (channel address) of the
specified device.

Default: None.

IBUF (input_buffer_count)

 Specifies the number (3:30) of input buffers. The number of buffers must be less
than or equal to 255.

Note: These buffers (20 KB each) are page-fixed in real storage for as long as the
device is active. This affects paging activity.

Default: 10.

MEDIANAME (name) Specifies the MEDIA statement with which this driver is associated.

Default: The most recent MEDIA statement.

RESTART (restart_time)

Specifies the time interval, in seconds, for either of these events:
■ Restart after an abnormal termination due to an I/O error

■ Sampling frequency when an unreachable device is detected during startup

Valid values are between 5-65535, or zero. If this value is omitted, or if zero is
specified, the default interval is used.

Default: 60 seconds.

Network Configuration 3–15

CDLC Statement

OBUF (output_buffer_count)

Specifies the number (3:30) of output buffers. The number of buffers must be less
than or equal to 255.

Note: These buffers (20 KB each) are page-fixed in real storage for as long as the
device is active. This affects paging activity.

Default: 10.

START | NOSTART | AUTOSTART | NOAUTOSTART

Specifies whether to start the device during initialization. AUTOSTART is an
alias for START. NOAUTOSTART is an alias for NOSTART.

Default: START.

CDLC Statement Usage Notes

Example NCP Coding

This following table shows the relevant portions of the NCP used for this
configuration.

NCPOPT OPTIONS
NEWDEFN=(YES,ECHO,NOSUPP)

NDF options.

NCP01 BUILD VERSION=V7R3F,
 CNLSQMAX=10000,
 CNLSQTIM=10,
 IPPOOL=NCP,
 IPRATE=(40,50),
 IPSNAP=NONE, . . .

Minimum level NCP Version 7 Release 3
IP performance parameters.

RINGGRP GROUP ECLTYPE=(PHY,ANY), . . .
RINGLINE LINE ADDRESS=(1088,ANY),
 INTFACE=IPTOKEN,
 ADAPTER=TIC2
RINGPU PU ADDR=01,
 NETWORK=SNA,PUTYPE=1
RINGIP PU ADDR=02,
 ARPTAB=(1000,20,NOTCANON),
 NETWORK=IP,PUTYPE=1

Token-ring definition.

NCSTGRP GROUP NCST=IP, . . .
NCSTLINE LINE
NCSTPU PU
NCSTLU LU INTFACE=IPOWNER,
 REMLU=SNALINK

NCST group.

3–16 Customization Guide

CDLC Statement

CAGRP GROUP LNCTL=CA, . . .
CALINE LINE ADDRESS=01,
 CATYPE=TYPE6, . . .
CAPU PU PUTYPE=1,
 INTFACE=CATCP,
 LADDR=140.51.100.22,
 P2PDEST=140.51.100.20,
 SNETMASK=255.255.255.0,
 METRIC=1,PROTOCOL=NONE

Dedicated channel adapter interface.

 IPOWNER INTFACE=IPOWNER,
 HOSTADDR=140.51.100.21,
 UDPPORT=580,
 NUMROUTE=(25,25,25)

IPOWNER definition.

 IPLOCAL INTFACE=IPOWNER,
 LADDR=140.51.100.23,
 P2PDEST=140.51.100.21,
 SNETMASK=255.255.255.0,
 METRIC=1,PROTOCOL=NONE
 IPLOCAL INTFACE=IPTOKEN,
 LADDR=140.51.101.64,
 SNETMASK=255.255.255.0,
 METRIC=1,PROTOCOL=NONE

IPLOCAL definitions for the NCST interface and
the token-ring interface.

 IPROUTE INTFACE=IPTOKEN,
 DESTADDR=140.51.102.0,
 NEXTADDR=140.51.101.65,
 METRIC=1,DISP=PERM

IPROUTE definition for a static route to a default
gateway.

Network Configuration 3–17

CETI Driver Configuration

CETI Driver Configuration
The CETI statement specifies configuration parameters for a channel adapter that
implements the CETI.

These devices are compatible with the Interlink 3722/3762 High Performance
Controller.

CETI Statement Syntax
CETI [CUTYPE (3722 | 3762)]
 DEVADDR (ccuu)
 [IBUF (input_buffer_count)]
 [IPARM (buffer_thresh_old gap_time)]
 [MEDIANAME (name)]
 [OBUF (output_buffercount)]
 [OPARM (buffer_threshold gap_time)]
 [RESTART (restart_time)]
 [START | NOSTART | AUTOSTART | NOAUTOSTART]
 [WTIME (wait_time)]

CUTYPE (3722 | 3762) Specifies the control unit type.

Default: 3762.

DEVADDR (ccuu) Specifies the first channel cc and unit number uu (channel address) of the
specified device.

Default: None.

IBUF (input_buffer_count)

Specifies the number (3:255) of input buffers. The number of buffers must be less
than or equal to 255.

Note: These buffers (1500 bytes each) are page-fixed in real storage for as long as
the device is active. This affects paging activity.

Default: 90.

3–18 Customization Guide

CETI Driver Configuration

IPARM (buf_threshold gap_time)

Specifies the input data port parameters consisting of the buffer threshold (0:255)
and the message gap time (IBUF-2:65535) expressed in 64 microsecond units.

A message gap of 65535 indicates not to interrupt based on time. The buffer
threshold must be less than or equal to the number of input buffers. The input
values (IPARM) can significantly affect the throughput rate of FTPs, particularly
when sending data from MVS.

Recommended performance values for IPARM are (4 16), (4 0) or (0 0). The best
IPARM values are determined by the CPU type, type of CETI device, remote host
capabilities and network load. Several values should be tested before settling on
a specific value.

Default: (0 0).

MEDIANAME (name) Specifies the MEDIA statement with which this driver is associated.

Default: The most recent MEDIA statement.

OBUF (output_buffer_count)

Specifies the number (3:255) of output buffers. The number of buffers must be
less than or equal to 255.

Note: These buffers (1500 bytes each) are page-fixed in real storage for as long as
the device is active. This affects paging activity.

Default: 90.

OPARM (buf_threshold gap_time)

Specifies the output data port parameters consisting of the buffer threshold
(0:255) and the message gap time (0:65535) expressed in 64-microsecond units.

A message gap of 65535 indicates not to interrupt based on time. The buffer
threshold must be less than or equal to the number of output buffers.

The message gap should always be set to 65535 because an interrupt based on
the amount of time since the last send is never required.

Default: ((OBUF-2) 65535).

Network Configuration 3–19

CETI Driver Configuration

RESTART (restart_time)

Specifies the time interval, in seconds, for either of these events:

Restart after an abnormal termination due to an I/O error.

Sampling frequency when an unreachable device is detected during startup.

Valid values are between 5-65535, or zero. If this value is omitted, or if zero is
specified, the default interval is used.

Default: 60 seconds.

START | NOSTART | AUTOSTART | NOAUTOSTART

Specifies whether to start the device during initialization.

AUTOSTART is an alias for START. NOAUTOSTART is an alias for NOSTART.

Default: START.

WTIME (wait_time) Specifies the control port wait time in 64 microsecond units (0:65535). A value of
5092 (325 ms) is recommended if there are other devices on the same channel to
prevent those devices from being unable to transfer data over the channel. A
value of zero (0 ms) is recommended if there are no other devices on the same
channel to allow optimum throughput of the CETI device.

See the CETI Statement Usage Notes for more information about WTIME.

Note: A value of 5092 allows the very slowest of hardware to share the channel
with CETI. For performance, use the default of 512 or a smaller value that works
in your environment.

Default: 1563 if CUTYPE is 9750, 512 for all other types.

3–20 Customization Guide

CETI Driver Configuration

CETI Statement Usage Notes

Control Port Wait
Time

The control port wait time (WTIME) controls how much of the channel
bandwidth is used by the control port. If there is no activity on the data ports,
the control unit pauses for the specified amount of time after every CWRITE
command to allow other control units access to the channel. Increasing this
value lowers channel utilization but increases response time.

The granularity of the control unit's interval timer might limit the usefulness of
this parameter. For example, the Intel 9750E currently is unable to measure any
interval less than 100 milliseconds. Therefore, any value of WTIME less than 1563
is treated as zero by the control unit. This results in very high channel utilization,
and other control units on the channel continue to operate, although with
diminished performance. Control units that require a large amount of channel
bandwidth should not be configured on the same channel with a CETI control
unit.

Maximum Message
Buffering

The maximum number of full-size network messages that can be buffered is
255. Be aware that these buffers are page-fixed in real storage for as long as the
device is active. This affects system paging activity.

Interrupt Handling The CETI control unit uses several mechanisms to limit the number of
interrupts generated to the CPU. One such mechanism is to delay an attention
interrupt after transfer of a message to allow subsequent messages to be
transferred as a single burst. Two parameters that control the amount of delay
are:

■ Buffer Threshold specifies the number of buffers that can be transferred
before an attention interrupt is generated.

■ Message Gap time specifies the amount of time the control unit waits after a
burst of buffers before presenting an attention interrupt, even if the burst
contains less than the buffer threshold. Choose the values for these
parameters to balance responsiveness with high throughput.

CETI usage of ARP CETI uses Address Resolution Protocol (ARP) to map higher-level protocol
addresses into lower-level hardware addresses. A dynamic cache of address
mappings is maintained for this purpose.

CETI Example

The following example shows CETI statement usage:
CETI CUTYPE(3722)
 DEVADDR(0240)
 IBUF(20)
 IPARM(4 16)
 OBUF(20)
 OPARM(18 65535)
 RESTART(30)
 WTIME(128)

Network Configuration 3–21

CLAW Driver Configuration

CLAW Driver Configuration
Use the CLAW statement to specify configuration parameters for an interface to
an RS/6000, Cisco 7000, or Cisco 7500 series running the Common Link Access to
Workstation (CLAW) protocol.

CLAW Protocol

The Common Link Access to Workstations (CLAW) is a protocol for
communicating between a mainframe and a channel-attached workstation. The
protocol solves two major problems:

■ Enables multiple applications on the workstation communicate with
multiple applications on the host over a single pair of subchannel addresses.

■ Enables data be transferred over the channel with a minimal number of I/O
interrupts, and does not consume the channel when idle, as CETI does.

Unicenter TCPaccess currently is a single application (TCP/IP) and it
communicates with a single application (TCP/IP) on the workstation (support
for multiple applications on either host or workstation is not important for
Unicenter TCPaccess at this time). However, Unicenter TCPaccess must
implement the protocol to initiate and terminate a host application to
workstation application connection. This connection process consists of these
steps:

1. Connect to the workstation and validate connection parameters. Both the
workstation and host have eight-character names. These names are
exchanged in both the system validate request and response messages. If
they do not match, the connection is refused.

The validate request and response also contain the block size of data
messages, which must be one of these values: 1024, 2048, 3072, or 4096
(unless PACKED is specified. See the BUFSIZE parameter).

Within TCPaccess, the host name, workstation name, and block size are
specified on the CLAW statement. On an RS/6000, use the smit chgcat
command to set these parameters.

2. Once the system validate sequence completes, application connection starts.
This process includes sending and receiving connection requests, sending
and receiving connection confirmations, and sending and receiving
disconnects, where appropriate.

Both the connection request and confirm contain the application name, which is
hard coded as TCP/IP within both Unicenter TCPaccess and the RS/6000.

A successful connection results in a path between Unicenter TCPaccess and the
workstation. This path is assigned a link ID that is used as part of Channel
Command Word (CCW) operation code for reading and writing data.

3–22 Customization Guide

CLAW Driver Configuration

Once the connection is established, a point-to-point path exists between TCP/IP
on the host and TCP/IP on the workstation. This path is a separate subnet from
any attached LANs or WANs. This means the workstation acts as an IP router
between any LANs and the host. Therefore, the workstation must have a routing
protocol such as GateD or routed running so the rest of the world is able to
determine a network path to the host.

Routing protocols such as RIP rely on the presence of inbound broadcasts on
each interface to determine operability of a path. Since Unicenter TCPaccess does
not send RIP updates unless GateD is running on the host, any routing protocol
on the workstation must be configured so that the point-to-point interface is
configured as passive. For GateD on the workstation, gated.conf contains the
entry interface ca0 passive; .

The maximum transmission unit over the channel is the block size that is
specified on the CLAW statement. There are no hardware headers sent or
received with each frame, so the entire block size can be used for TCP and IP
data. Address resolution (ARP) does not occur because this is a point-to-point
connection.

The default block size is 4096 (32678, if PACKED). However, the maximum
ethernet packet cannot exceed 1500 bytes (IP and TCP data). This leaves a lot of
room in each buffer unused since the TCP/IP application protocol does not
permit blocking of data within each buffer. The RS/6000 allows the size of
buffers to be 2048, which is more appropriate for ethernet. However, the Cisco
7000 and 7500 series only support 4096.

Note: The RS/6000 can support only 212,992 bytes of channel buffers. This is 26
input and 26 output buffers at 4096 bytes, 34 input and 34 output buffers at 3072
bytes, 52 input and 52 output buffers at 2048 bytes, and 104 input and 104 output
buffers at 1024 bytes. Do not specify a number larger than this. The RS/6000 may
crash and fail to reboot without removing the channel card.

The most efficient block size for sending TCP packets to the RS/6000 is 4096. For
other hosts beyond the RS/6000, 2048 is the optimal block size. However, due to
propagation delays within the RS/6000, rarely do all the host channel buffers get
used. This indicates that 4096 is the better choice in a mixed environment.

Network Configuration 3–23

CLAW Driver Configuration

CLAW Statement Syntax
CLAW DEVADDR (ccuu)
 [BUFSIZE (1024 | 2048 | 3072 | 4096 | 8192 | 12288 | 16384 | 20480 |

 24576 | 28672 | 32768 | 36864 | 40960 | 45056 | 49152 |
 53248 | 57334 | 61440 | 65535)]
 [CHARSET (charset)]
 [HOSTNAME (hostname)]
 [IBUF (inputbuffercount)]
 [MEDIANAME (name)]
 [OBUF (outputbuffercount)]
 [PACKED | UNPACKED]
 [RESTART (restarttime)]
 [SINGLENOOP | DOUBLENOOP]
 [START | NOSTART | AUTOSTART | NOAUTOSTART]
 [WSNAME (workstation_name)]

DEVADDR (ccuu) Specifies the first channel cc and unit number uu (channel address) of the
specified device.

Default: None.

BUFSIZE(1024 | 2048 | 3072 | 4096 | 8192 | 12288 | 16384 | 20480 | 24576 | 28672 | 32768 | 36864 |
40960 | 45056 | 49152 | 53248 | 57334 | 61440 | 65535)

Specifies the size of each individual buffer. This parameter applies to both input
and output buffers.

Note: Sizes above 4096 are valid if PACKED is specified.

Default: 4096 (32768 if packed; sizes below 4096 are invalid if PACKED is
specified).

CHARSET (name) Specifies the name of the translation character set to use to convert host,
workstation, and application names from EBCDIC to ASCII and vice versa.

Default: ENGLISH.

HOSTNAME (name) Specifies the one- to eight-character name by which the host is known as defined
in the CLAW definitions on the workstation.

Default: HOST.

IBUF (inputbuffercount) Specifies the number of input buffers (5:256, 2:16 if PACKED is specified). These
buffers are page-fixed in real storage for as long as the device is active. This
affects paging activity.

Default: 26, four if PACKED is specified.

MEDIANAME (name) Specifies the MEDIA statement with which this driver is associated.

Default: The most recent MEDIA statement.

3–24 Customization Guide

CLAW Driver Configuration

OBUF (outputbuffercount)

Specifies the number of output buffers (5:256, 2:16 if PACKED is specified).

Note: These buffers (20 KB each) are page-fixed in real storage for as long as the
device is active. This affects paging activity.

Default: 26, four if PACKED is specified.

PACKED | UNPACKED

Specifies packing of datagrams in a buffer.

Note: This can only be specified if the device supports packing.

Default: Unpacked.

RESTART (restarttime) Specifies the time interval, in seconds, for restart after an abnormal termination
due to an I/O error.

Valid values are between 5-65535, or zero. If this value is omitted, or if zero is
specified, the default interval is used.

Default: 60 seconds.

SINGLENOOP | DOUBLENOOP

Specifies handling of NOOP channel commands. DOUBLENOOP appends two
NOOPs on the end of both the read and write subchannels. SINGLENOOP does
not append extra NOOPs.

Default: SINGLENOOP.

START | NOSTART |AUTOSTART | NOAUTOSTART

Specifies whether to start the device during initialization. AUTOSTART is an
alias for START. NOAUTOSTART is an alias for NOSTART.

Default: START.

WSNAME (workstation_name)

Specifies the name of the workstation as defined in the CLAW definitions on the
workstation.

Default: PSCA.

Network Configuration 3–25

CLAW Driver Configuration

CLAW Statement Usage Notes

Tracing the Channel
Program

Because the channel program is being dynamically updated, the Generalized
Trace Facility (GTF) has difficulty tracing it. Use GTF to trace I/O error
problems and use TCPEEP or Component Trace to look at data.

Subnet
Considerations

The CLAW interface creates a separate subnet link between TCP/IP running on
the host and TCP/IP on the workstation. This is considered a separate subnet.
The host and the workstation are normally the only hosts on the subnet.
Multiple TCP/IP address spaces may share a single channel as long as each
TCP/IP address space has its own subchannel pair and if the address is defined
in the workstation/router. In this case, all TCP/IP address spaces and the
workstation share the subnet.

Accessing Networks
Attached to the
Workstation

To access any network attached to the workstation (i.e., any ethernet, token
ring, FDDI ring, and so forth), the workstation must be defined to Unicenter
TCPaccess as an IP router. Use the ROUTE configuration statement to define
the workstation as the default router:
ROUTE DEST(0.0.0.0) ROUTE(a.b.c.d)

where a.b.c.d is the Internet address of the CLAW interface on the workstation.

In addition, routing must be permitted on the workstation. Use the command no
-a to view TCP/IP parameters on an RS/6000. Use no -o ipforwarding=1 to
forward IP datagrams on the RS/6000.

Defining a Path to the
Host

To make Unicenter TCPaccess accessible from other networks or subnets, define
either a static or a dynamic path to the host via the workstation.

This is an example of a static route command on a UNIX system:
route add 138.42.136.1 138.42.128.234 1

138.42.136.1 The Internet address of the host.

138.42.128.234 The Internet address of the workstation.

1 Hop count.

Note: Use the LAN – not CLAW – Internet address of the workstation when
defining the first hop gateway.

3–26 Customization Guide

CLAW Driver Configuration

Dynamic Routing with
CLAW

In order to use dynamic routing, the CLAW workstation must be running some
type of routing protocol such as RIP, HELLO, and so forth. GateD (which is
preferable) or routed can be run on the workstation to let the workstation
announce the presence of the host.

When configuring GateD on the workstation, the CLAW interface must be
defined as passive unless GateD is running on the host. In other words, if there is
no gateway protocol running on the host, then the GateD on the workstation
must not delete the route due to lack of routing responses from the host.

This is what a sample gated.conf file (the configuration file for GateD on the
workstation) looks like:
interface ca0 passive ;

rip supplier {
 interface ca0 noripout noripin;
};
static {
 138.42.136.1 gateway 138.42.136.1 preference 0 ;
};

LAN Message
Headers

IP packets sent and received over the CLAW interface do not have a LAN
message header prepended to them as ethernet, token ring, and FDDI have.
This allows the TCP/IP MTU size to be specified up to the size defined by the
BUFSIZE parameter on the CLAW statement.

Maximizing Buffer
Space

An RS/6000 supports a buffer pool of up to 212,992 bytes, which is 52 4096-byte
buffers. If the majority of IP traffic going over the channel is destined for hosts
other than the RS/6000, and those hosts are on an ethernet, consider reducing
the block size being transferred across the channel from 4096 to 2048. This
reduces the amount of wasted space in each buffer from 63% to 26% while at
the same time doubles the number of buffers.

Set the block size to 2048 on both the host (BUFSIZE(2048)) and on the
workstation (Transmit Buffer Size and Receive Buffer Size). This change
increases the maximum number of buffers on the workstation from 52 to 104 (52
input/52 output).

Network Configuration 3–27

CLAW Driver Configuration

Specifying the
Number of Buffers

The number of input and output buffers defined on the host need not match the
number of buffers defined on the workstation. The number of buffers required
on the host varies by site. Consider these factors when determining the number
of buffers:

■ The I/O buffers used for CLAW are permanently page-fixed. Defining a
buffer pool that is too large reduces the total amount of real storage available
in your system and may increase the total paging rate of your system.

■ The TCP/IP receive window size limits the amount of data that can be sent
or received in a burst. For instance, a window size of 32,768 requires nine
buffers if the remote host is the CLAW workstation (32,768/4056) or 23
buffers if the remote host is attached on the ethernet (32,768/1460).

If the majority of IP datagram traffic is comprised of small messages (that is, not
equal to the MTU), an increase in buffers allows for quicker transfer to or from
the host. Consider reducing the size of the buffers.

Note: Some CLAW devices allow MTU sizes to exceed the buffer size. For
example, BUFSIZE(4096) and MTU(32768). While this results in optimized I/O
performance between the mainframe and the device, it does not always translate
to improved network activity and may be detrimental. A 32 KB size can be
locally agreed on between CLAW and the mainframe, but the actual network
limit is probably substantially less, so fragmentation results and reduces CLAW's
capacity to keep up with the input of the mainframe. This, in turn, can lead to the
mainframe overrunning the CLAW device, and excessive retransmissions
negating any I/O improvements.

CLAW Example

This example shows the usage of the CLAW statement:
CLAW DEVADDR(0FA0)
 BUFSIZE(4096)
 HOSTNAME(IBMHOST)
 IBUF(26)
 OBUF(26)
 RESTART(120)
 WSNAME(CLAWWS)

3–28 Customization Guide

CTC Driver Configuration

CTC Driver Configuration
Use the CTC statement to specify configuration parameters for a CTC (channel-
to-channel) interface.

The CTC LNI expects a pair of even-odd devices, one reading, and the other
writing. The partner stack has a corresponding pair, but the read/write
designations are reversed. For example, 808 and 809 are configured read/write
on CPU A, and will connect with 808 and 809, which are configured as
write/read on CPU B.

Once the connection is established, a point-to-point path exists between the
TCP/IP stacks. This connection is a separate subnet from any LANs and the host.
Care should be taken when assigning addresses and the subnet mask. Route
definitions need to be carefully examined to ensure that packets sent to the CTC
connection are routed correctly.

If the stack is configured with a static VIPA address, this becomes the source
address of outgoing packets. The stack on the other end of the CTC connection
must have a route back across the CTC for the VIPA address. A dynamic VIPA is
only used as the source address for those sockets that are bound to a dynamic
VIPA.

ARP is not supported. Therefore, network idle conditions are not reported.

Network Configuration 3–29

CTC Driver Configuration

CTC Statement Syntax

Use the CTC statement to configure a CTC (channel-to-channel) driver.

CTC DEVADDR (ccuu)
 [BUFSIZE (buffer_size)]
 [IBUF (input_buffer_count)]
 [MEDIANAME (value)]
 [OBUF (output_buffer_count)]
 [RESTART (restart_value)]
 [START | NOSTART | AUTOSTART | NOAUTOSTART]

DEVADDR (ccuu)

or

DEVADDR(ccuu R)

or

DEVADDR(ccuu W)

Specifies the first channel cc and unit number uu (channel address) of the
specified device.

ccuu Always the even address of an even/odd pair, and becomes part
of the device name. The R/W indicators establish direction of
transfer.

(ccuu) The same as (ccuu R).

(d R) The read device, ccuu+1 will write.

(ccuu W) The write device, ccuu+1 will read.

Default: None.

BUFSIZE (buffer_size) Defines the buffer size (4096:65535) in four KB intervals. Size will be rounded to
the next higher four KB boundary

Default: 32768

IBUF (input_buffer_count)

Specifies the number (5:256) of input buffers.

Note: These buffers are page-fixed in real storage for as long as the device is
active. This affects paging activity.

Default: 10.

MEDIANAME (name) Specifies the MEDIA statement with which this driver is associated.

Default: The most recent MEDIA statement.

3–30 Customization Guide

CTC Driver Configuration

OBUF (output_buffer_count)

 Specifies the number (5:256) of output buffers.

Note: These buffers are page-fixed in real storage for as long as the device is
active. This affects paging activity.

Default: 10.

RESTART (restart_time)

Specifies the time interval, in seconds, for either of these events:

■ Restart after an abnormal termination due to an I/O error

■ Sampling frequency when an unreachable device is detected during startup

Valid values are between 5-65535, or zero. If this value is omitted, or if zero is
specified, the default interval is used.

Default: 60 seconds.

START | NOSTART | AUTOSTART | NOAUTOSTART

Specifies whether to start the device during initialization. AUTOSTART is an
alias for START. NOAUTOSTART is an alias for NOSTART.

Default: START

CTC Example

CPU A
MEDIA VIRTUAL
 NAME(VIRTUAL)
NETWORK IPADDRESS(10.0.83.99)
 SUBNET(255.255.255.0)
 MEDIANAME(VIRTUAL)
MEDIA ETHERNET OSA definitions
 .
 . (Ethernet parameters not shown)
 .
MEDIA CTC
 MSSDEF(8192)
 MTU(8192)
 NAME(CTC1)
NETWORK IPADDRESS(10.0.71.53)
 SUBNET(255.255.255.0)
CTC BUFSIZE(32768) IBUF(5) OBUF(5)
 DEVADDR(FAA R)
 RESTART(60) START
* Define gateway
ROUTE DEST(0.0.0.0) ROUTE(10.0.64.41) MEDIANAME(OSA)
ROUTE DEST(10.0.71.55) ROUTE(10.0.71.53) MEDIANAME(CTC1)

Network Configuration 3–31

CTC Driver Configuration

CPU B
MEDIA CTC
 MSSDEF(8192)
 MTU(8192)
 NAME(CTC1)
NETWORK IPADDRESS(10.0.71.55)
 SUBNET(255.255.255.0)
CTC BUFSIZE(32768) IBUF(5) OBUF(5)
 DEVADDR(FAA W)
 RESTART(60) START

Define gateway
ROUTE DEST(10.0.83.99) ROUTE(10.0.71.55)

If CPU A does not have VIPA coded, the ROUTE statement looks like:
ROUTE DEST(10.0.71.53) ROUTE(10.0.71.55)

For this configuration, the following displays appear:
CPU A
D U,,,FAA,2
UNIT TYPE STATUS
0FAA SCTC A-BSY
0FAB SCTC A
CPU B
D U,,,FAA,2
UNIT TYPE STATUS
0FAA SCTC A
0FAB SCTC A-BSY

3–32 Customization Guide

HYPERchannel Configuration

HYPERchannel Configuration
Use the HYPER statement to specify configuration parameters for an interface to
a 50-megabit HYPERchannel network using N220 or EN642 adapters
manufactured by Network Systems Corporation.

HYPER Statement

This is the syntax for the HYPER statement.
HYPER DEVADDR (ccuu)
 [CUTYPE (N220 | EN642 | PB250)]
 [IBUF (input_buffer_count)]
 [MEDIANAME (name)]
 [OBUF (output_buffer_count)]
 [RESTART (restart_time)]
 [START | NOSTART | AUTOSTART | NOAUTOSTART]

DEVADDR (ccuu) Specifies the first channel cc and unit number uu (channel address) of the
specified device.

Default: None.

CUTYPE (N220 | EN642 | PB250)

Specifies control unit type. Type PB250 should be coded for all PB25x series
Escon devices.

Default: None

IBUF (input_buffer_count)

Specifies number of input buffers (2:30).

Note: These buffers (20 KB each) are page-fixed in real storage for as long as the
device is active. This affects paging activity.

Default: Six.

MEDIANAME (name) Specifies the MEDIA statement with which this driver is associated.

Default: The most recent MEDIA statement.

Network Configuration 3–33

HYPERchannel Configuration

OBUF (output_buffer_count)

Specifies number of output buffers (2:30).

Note: These buffers (20 KB each) are page-fixed in real storage for as long as the
device is active. This affects paging activity.

Default: Six.

RESTART (restart_time)

Specifies the time interval, in seconds, for either of these events:

■ Restart after an abnormal termination due to an I/O error.

■ Sampling frequency when an unreachable device is detected during startup.

Valid values are between 5-65535, or zero.

Note: If this value is omitted, or if zero is specified, the default interval is used.

Default: 60 seconds.

START | NOSTART | AUTOSTART | NOAUTOSTART

Specifies whether to start the device during initialization. AUTOSTART is an
alias for START. NOAUTOSTART is an alias for NOSTART.

Default: START.

HYPER Statement Usage Notes

VARP Usage The HYPERchannel LNI does not use Address Resolution Protocol (ARP) to
map higher-level protocol addresses into lower-level hardware addresses. A
static table of address mappings is maintained for this purpose.

The address resolution cache is initialized from a static address resolution table
during LNI startup. This table is generated with the ARPTABLE and ARP
statements. Static entries in the ARP cache are never removed and never
updated. If ARPTABLE has been specified, no action is taken and only hosts
defined with ARP statements can be accessed.

3–34 Customization Guide

LCS Configuration Parameters

HYPER Example

This example shows the usage of the HYPER statement:
HYPER CUTYPE(N220)
 DEVADDR(0400)
 IBUF(20)
 OBUF(12)
 RESTART(60)

LCS Configuration Parameters
The LCS statement in the TCPCFGxx member of the PARM data set specifies LNI
configuration parameters for channel attached devices that are compatible with
the 3172 Interconnect Controller and the IBM 8232 LAN Channel Station.

The following devices are compatible with this interface:

■ IBM 3172 Interconnect Controller

■ IBM OSA (Open Systems Adapter, Integrated LAN Interface Adapter)

■ BTI ELC2 executing 8232 emulation microcode

■ Interlink 3762 FCA (FDDI) and TCA (Token Ring), and ECA (Ethernet)
running 8232 emulation

■ IBM 2216 NWAYS Multiaccess Connector

Each of these devices supports one or more pairs of device addresses. Each pair
of device addresses is represented by an LCS statement. One or more network
adapters are associated with each pair of device addresses. Each network adapter
is represented in TCPCFGxx with a LINK statement. The NAME operand on the
LCS is referenced by the LINK statement to activate the device and network
adapters.

Network Configuration 3–35

LCS Configuration Parameters

LCS Statement
LCS NAME (lcs_device_name)

 DEVADDR (ccuu)
 [CUTYPE (type)]
 [IBUF (input_buffer_count)]
 [OBUF (output_buffer_count)]
 [RESTART (restart_time)]
 [TIMING | NOTIMING]

NAME (lcs_device_name)

Specifies the name of this device as referenced by the LINK statement,
LCSNAME keyword.

DEVADDR (ccuu) Specifies the first channel cc and unit number uu (channel address) of the
specified device.

CUTYPE (type) Specifies the control unit type. This is used only for visual documentation.

Type can be any of the following:

2216, 3172, 3172-1, 3172-3, 3722, 3762, OSA

Default: None.

IBUF (input_buffer_count)

Specifies the number of input buffers (2:256) for the device.

Note: These buffers (20 KB each) are page-fixed in real storage for as long as the
device is active. This affects paging activity.

Default: Four.

OBUF (output_buffer_count)

Specifies the number of output buffers (2:256) for the device.

Note: These buffers (20 KB each) are page-fixed in real storage for as long as the
device is active. This affects paging activity.

Default: Four.

3–36 Customization Guide

3172 and 8232 Configuration

RESTART (restart_time)

Specifies the time interval, in seconds, for restart after an abnormal termination
due to an I/O error.

Note: Valid values are between 5-65535, or zero. If this value is omitted, or if
zero is specified, the default interval is used.

Default: 60 seconds.

TIMING | NOTIMING Specifies whether to issue the LCS TIMING command to the Device during idle
periods. Failure to receive a response indicates the device is no longer active. The
Device will be restarted if no response is received.

IBM OSA Express Adapters, with updated EC levels, will not respond to the LCS
TIMING command. The NOTIMING parameter should be specified for these
devices.

Default: TIMING (60 seconds).

3172 and 8232 Configuration
Use the LINK statement to define the link level network adapter as 3172 or 8232
and to associate the link level with the LCS device level specification.

LINK Statement Syntax
LINK LCSNAME (lcs_device_name)

 [ADAPTER (number)]
 [ALLRT | SINGLERT | TRANSPARENT | NORIF]
 [LOCALADDR | NOLOCALADDR]
 [MEDIANAME (name)]
 [PFILTER | NOPFILTER]
 [START | NOSTART | AUTOSTART | NOAUTOSTART]

LCSNAME (lcs_device_name)

Specifies the name of this LNI as referenced by a previous LCS statement.

Default: None.

ADAPTER (number) Specifies the 3172 adapter for this interface. (0:15)

 Note: Adapter numbers greater than 3 are only allowed for 2216 devices.

Default: None.

Network Configuration 3–37

3172 and 8232 Configuration

ALLRT | SINGLERT | TRANSPARENT | NORIF

Defines how to route broadcast ARPs for token ring adapters.

ALLRT Use all route broadcasts on ARPs.

SINGLERT Use single route broadcasts on ARPs.

TRANSPARENT Do no use source routing when broadcasting ARPs.

NORIF Alias to TRANSPARENT.

 Default: ALLRT.

LOCALADDR | NOLOCALADDR

Specifies how to initialize the local hardware address of the driver.
LOCALADDR specifies the burned-in adapter hardware address should not be
reset during the startup sequence

LOCALADDR Suppresses the SETADAPTER command.

NOCALADDR Sends a SETADAPTER command to reset the hardware
address to its default.

 Note: Some devices do not support SETADAPTER and
will fail during startup. Consult with the manufacturer for
information about the SETADAPTER command.

Default: NOLOCALADDR.

MEDIANAME (name) Specifies the MEDIA statement with which this driver is associated.

Default: The most recent MEDIA statement.

PFILTER | NOPFILTER

Specifies whether to send a PFILTER command to reset hardware filters during
startup. Some devices require this command and some devices do not support
PFILTER commands and will fail during startup.

Consult with the manufacturer for more information about filtering commands.

Default: PFILTER.

3–38 Customization Guide

3172 and 8232 Configuration

START | NOSTART | AUTOSTART | NOAUTOSTART

Specifies whether to start the device during initialization.

AUTOSTART is an alias for START.

NOAUTOSTART is an alias for NOSTART.

Default: START

LINK Statement Usage Notes

Statement Order The LINK statement references a previous LCS statement. The LCS statement
must precede the LINK statement.

Adapter Types The 3172 supports up to four adapters, which may be of different types. The
following types are supported:

■ ETHERNET 10 MB/sec Etherne—MTU(1500)

■ TOKEN4 4 MB/sec Token Ring—MTU(2002)

■ TOKEN16 16 MB/sec Token Ring—MTU(4352)

■ FDDI 100 MB/sec Token Ring—MTU(4352)

Known Device Issues ■ The IBM Pentium 3172 and EtherStreamer32 card (3172-3) must have the
LOCALADDR keyword coded.

■ The IBM 2216 must have the LOCALADDR and NOPFILTER keywords
coded.

■ Some microcode levels of OSA adaptors require the LOCALADDR keyword
to be coded. There are no known problems with coding this keyword for all
levels of OSA microcode.

■ OSA Express Adapters, with updated EC levels, require the LCS NOTIMING
parameter. See LCS Configuration Parameters section.

■ Sites should verify that devices coded on the LCS DEVADDR parameter are
also defined in ‘SYSx.PARMLIB’ member IECIOSxx MIH section with a
value of TIME=00:00.

■ CNT devices must have a static ARP statement defined. See ARP
Configuration.

Network Configuration 3–39

3172 and 8232 Configuration

ARP Considerations When Unicenter TCPaccess needs to broadcast an addressing resolution packet
on a token ring network, there are two methods for determining how the packet
traverses token ring bridges.

■ When you specify SINGLERT, the ARP is transmitted using a Single Route
Broadcast. Only specify SINGLERT if the token ring bridges are configured
to forward packets with the Single Route indicator set. Setting SINGLERT
otherwise may cause portions of the token ring network to be unreachable.

■ When ALLRT is specified, the ARP is transmitted using an All Route
Broadcast.

Transparent vs.
Source Routing

Most Token Ring Networks are capable of dynamically distinguishing between
transparent and source routing by testing routing information, or RIF, in the
packet header. In the rare cases where source routing is not recognized, the
TRANSPARENT or NORIF keyword should be used. Source routing is more
efficient and is the configuration default.

LINK Example

The following example shows LINK statement usage and its associated LCS
statement:
LCS NAME(ETHER) DEVADDR(500)
LINK LCSNAME(ELINK)
 ADAPTER(0) MEDIANAME(ETHER)

3–40 Customization Guide

XCF Driver Configuration

XCF Driver Configuration
Use the XCF statement to specify configuration parameters for an XCF (Cross-
System Coupling Facility) interface. This device driver enables communication
(send and receive data) among instances of Unicenter TCPaccess running in the
same MVS image or in different MVS images within the same sysplex.

Once the interface is initialized, a signaling path exists between each
active instance of TCPaccess. This interface is modeled after a broadcast subnet
and must be a separate subnet from any other network or subnet. Care should be
taken when assigning IP addresses and the subnet mask. Route definitions must
be carefully examined to ensure that packets sent across the XCF interface are
routed correctly.

If the stack is configured with a static VIPA address, this becomes the source
address of outgoing packets. The stack on the other end of the XCF connection
must have a route back across the XCF for the VIPA address. A dynamic VIPA is
only used as the source address for those sockets that are bound to a dynamic
VIPA.

ARP is not supported so network idle conditions are not reported.

XCF Statement

Use the XCF statement to configure an XCF (Cross-System Coupling Facility)
driver.

XCF Statement Syntax
XCF [GROUP(group_name)]
 [MEMBER(member_name)]
 [MEDIANAME(media_name)]
 [START|NOSTART|AUTOSTART|NOAUTOSTART]

GROUP(group_name) Specifies the name you assign to the XCF group that the member joins. The
group name must be one- to eight- characters long.

Valid characters are A-Z, 0-9, and national characters ($, # and @).

To avoid using the names IBM uses for its XCF groups, do not begin group
names with letters A through I or the character string SYS. Also, do not use the
name UNDESIG, which is reserved for use by the system programmer in your
installation. The XCF group name will be assigned to the interface name.

Default: T01XCF.

Network Configuration 3–41

XCF Driver Configuration

MEMBER(member_name)

Specifies the name you assign to the XCF member. The member name must be 1
to 16 characters long.

Valid characters are A-Z, 0-9, and national characters ($, # and @).

Default: ssssssssjjjjjjjj, where:

ssssssss The OS/390 system name of the system where Unicenter
TCPaccess is executing

jjjjjjjj The JOB, STC, MOUNT, or LOGON name of the Unicenter
TCPaccess address space.

MEDIANAME(media_name)

Specifies the name with which the MEDIA the driver is associated.

Default: The name assigned to the most recent MEDIA statement.

START|NOSTART|AUTOSTART|NOAUTOSTART

Specifies whether to start the device during Unicenter TCPaccess initialization.

AUTOSTART is an alias for START.

NOAUTOSTART is an alias for NOSTART.

Default: The device is started during Unicenter TCPaccess initialization.

3–42 Customization Guide

XCF Driver Configuration

XCF Statement Usage Notes

XCF is part of the MVS base control program and provides high performance
communication links between MVS images that are linked in a sysplex by
channel-to-channel links, ESCON channels, or coupling facility links. Using XCF
services, Unicenter TCPaccess joins an XCF group using the group and member
name specified on the XCF statement (or the default names). Unicenter
TCPaccess XCF members do not require permanent status recording.

Each member of an XCF group must have a unique member name.
Consequently, if multiple instances of Unicenter TCPaccess execute concurrently
on the same MVS image with the same JOB, STC, MOUNT, or LOGON name,
and the Unicenter TCPaccess instances start XCF drivers for the same XCF
group, then the default XCF member name can only be used for one of the
Unicenter TCPaccess instances and a XCF member name must be explicitly
specified for the other members.

Each XCF group is limited to 4095 members, which is the theoretical maximum
number of instances of Unicenter TCPaccess that can participate in a single XCF
group. However, the maximum size of a XCF group is reduced if you set the
MVS MAXMEMBER parameter, used to define XCF couple data sets, to a lower
limit. Consequently, when formatting the primary and alternate couple data sets
to be used by the XCF component of MVS, you must ensure that the value
specified for the MAXMEMBER parameter is large enough to accommodate the
maximum number of Unicenter TCPaccess instances that you anticipate will be
concurrently active with XCF drivers started.

XCF Example
System SYSA, STC ACCESS
MEDIA ETHERNET
 CHECKSUM
 MTU(1500)
 MSSDEF(1500)
 NAME(CETI08)

NETWORK IPADDRESS(130.200.109.18)
 SUBNET(255.255.255.128)
 MEDIANAME(CETI08)

CETI DEVADDR(914)
 CUTYPE(3722)
 WTIME(10)
 IPARM(0 34)
 OPARM(28 65535)

MEDIA XCF
 MTU(8192)
 MSSDEF(8192)
 NAME(XCF)

NETWORK IPADDRESS(192.168.1.1)
 SUBNET(255.255.255.128)
 MEDIANAME(XCF)

Network Configuration 3–43

XCF Driver Configuration

XCF MEDIANAME(XCF)

ROUTE DEST(DEFAULT) ROUTER(130.200.109.2) MEDIANAME(CETI08)
System SYSB, STC ACCESS
MEDIA XCF
 MTU(8192)
 MSSDEF(8192)
 NAME(XCF)

NETWORK IPADDRESS(192.168.1.2)
 SUBNET(255.255.255.128)
 MEDIANAME(XCF)

XCF MEDIANAME(XCF)

ROUTE DEST(DEFAULT) ROUTER(192.168.1.1) MEDIANAME(XCF)

For this configuration, the NETSTAT XCF command displays:

T01NT020I Job ACCESS processing: NETSTAT XCF
T01NT110I Group Element IP Address Token
T01NT111I T01XCF SYSAACCESS 192.168.1.1 020000C3001E0001
T01NT112I State: Active Type: 1 Status: Up
T01NT113I System: SYSA STC: ACCESS
T01NT110I Group Element IP Address Token
T01NT111I T01XCF SYSBACCESS 192.168.1.2 0100003F001E0002
T01NT112I State: Active Type: 1 Status: Up
T01NT113I System: SYSB STC: ACCESS
T01NT000I Request complete

3–44 Customization Guide

ARP Configuration

ARP Configuration
Address resolution protocol is used to dynamically discover hardware addresses
corresponding to IP addresses. This information is stored in an ARP table and
aged and refreshed as needed. This protocol is normally used over ethernet,
token ring, and FDDI. It is therefore unusual for these media to need static ARP
information. If desired, static ARP entries may be created by coding ARP
statements associated with a MEDIA statement.

For HYPERchannel, the server ARP interface is no longer supported. However,
static ARP definitions are still required.

ARP Statement Syntax
ARP PA (internet_protocol_address)
 HA (hardware_address)
 [MAC (hardware_address)]
 [MEDIANAME (name)]

PA (internet_protocol_address)

Specifies the internet protocol address expressed in standard dot notation (that
is, 192.34.100.44).

Default: None.

HA (hardware_address) Specifies the physical hardware address expressed in standard dot notation (See
ARP Statement Usage Notes).

Default: None.

MAC (hardware_address)

MAC is an alias for HA.

MEDIANAME (name) Specifies the MEDIA statement with which this driver is associated.

Network Configuration 3–45

ARP Configuration

ARP Statement Usage Notes

Specifying Addresses Standard dot notation is used to specify protocol and hardware addresses
where each byte of the address is coded as a decimal number (0:255) and
separated from each other by periods.

The hardware address for Ethernet is 48 bits (6 bytes) long, and the hardware
address for HYPERchannel is 32 bits (four bytes) long. The 16-bit HYPERchannel
addresses should be coded as 32-bit addresses by putting two bytes of zero in
front of the address.

Subnet Numbers The MEDIANAME references a MEDIA statement and its associated
statements. The network and subnetwork numbers contained in the protocol
address in the ARP statement must be consistent with the local internet address
defined with those NETWORK statements.

Static ARP Override If the ARP statement immediately follows a CETI or LCS / LINK statement and
the PA keyword is equal to a defined network address, then the hardware
address overrides the hardware address supplied by the device. This should
only be used for those CETI or LCS devices that are supplying incorrect
hardware addresses, such as all zeroes.

ARP Examples

This example shows ARP statement usage:
ARP PA(27.132.0.1) HA(0.0.17.0)

ARP PA(27.132.0.2) HA(0.0.34.0)

3–46 Customization Guide

Defining Application Dynamic VIPA Subnets

Defining Application Dynamic VIPA Subnets
The VIPANET statement defines a subnet in which requests to activate a VIPA,
via BIND or SIOCSVIPA IOCTL, are honored. A VIPA defined in this manner is
referred to as an application dynamic VIPA.

Note: Any VIPA requested via SIOCSVIPA IOCTL or by implicit BIND to a
specific address must match some defined VIPANET subnet number, after the
VIPA is logically ANDed with the corresponding mask.

VIPANET Statement Syntax
VIPANET IPADDRESS(ip_address)

SUBNETMASK(subnet_mask)

IPADDRESS(ip_address) Specifies the IP address in standard dotted-decimal notation. The IP address,
when logically ANDed with the subnet mask, defines the range of IP addresses
that can be activated via BIND or SIOCSVIPA IOCTL.

Default: None.

SUBNETMASK(subnet_mask)

Specifies the subnet mask in standard dotted-decimal notation.

The mask must be:

■ Contiguous

■ Not zero

■ Not exceed 30 bits in length (that is, 255.255.255.252)

Default: The default mask is based upon the class of the network, as follows:

Class A 255.0.0.0

Class B 255.255.0.0

Class C 255.255.255.0

Network Configuration 3–47

Defining Application Dynamic VIPA Subnets

VIPANET Statement Usage Notes

The All-0s Subnet and
the All-1s Subnet

For each dynamic VIPA subnet defined, the all-0s subnet broadcast address and
the all-1s subnet broadcast address are not eligible for dynamic VIPA
activation.

VIPANET Example

This example shows the usage of the VIPANET statement and defines two
subnets eligible for dynamic VIPA activation via BIND or SIOCSVIPA IOCTL.

The two statements define 130.200.116.33 through 130.200.116.62 and
130.200.116.65 through 130.200.116.94 as the range of IP address that can be
activated via BIND or SIOCSVIPA IOCTL. IP addresses 130.200.116.32 (all-0s
broadcast address), 130.200.116.63 (all-1s broadcast address), 130.200.116.64 (all-
0s broadcast address), and 130.200.116.95 (all-1s broadcast address) are ineligible
for dynamic VIPA activation.
VIPANET IPADDRESS(130.200.116.32) SUBNETMASK(255.255.255.224)
VIPANET IPADDRESS(130.200.116.64) SUBNETMASK(255.255.255.224)

3–48 Customization Guide

Chapter

4 Internet Route Configuration

This chapter provides guidelines to help you customize your routing with
Unicenter TCPaccess.

The following topics are discussed in this chapter:

■ Manually Specifying Internet Routes—Describes how to tailor the ROUTE
statements for your site

■ ROUTE Statement—Describes the parameters for the ROUTE statement

Manually Specifying Internet Routes
The ROUTE statement in TCPCFGxx provides Unicenter TCPaccess with routing
information for packets addressed to hosts beyond the local network. For
example:
ROUTE DEST(DEFAULT) ROUTER(129.1.128.1) MEDIA(TOKEN1)

ROUTE DEST(0.0.0.0) ROUTER(129.1.64.1) MEDIA(ETHER1)

These entries specify the default router to use for routing from the local network
(the one to which Unicenter TCPaccess is connected) to a remote network. In this
particular environment, the host is connected to two networks and the default
router is a single IP router connected to each of the two IP networks. The router
has a unique address for each of the two IP networks.

These ROUTE statements specify that any IP packet to be routed to a host that is
not located on either local ethernet or token ring networks be sent to the router at
129.1.128.1 for routing to the final destination.

Note: Unicenter TCPaccess automatically selects the correct interface for all
packets destined to either of the locally attached networks such that the router is
not used by Unicenter TCPaccess to route traffic to either of the local networks.

Internet Route Configuration 4–1

ROUTE Statement

The ROUTE statement in the TCPCFGxx member provides Unicenter TCPaccess
with routing information for packets addressed to hosts beyond the local
network. Read the ROUTE Statement for detailed information on ROUTE
statements and what to do if you have multiple routers and networks. If you do
not have any routers to other networks/subnets, you need not code a ROUTE
statement.

Note: This statement is distributed as comments so you must un-comment it as
you make changes.

ROUTE Statement
Controls whether Unicenter TCPaccess acts as a router. One or more route
statements can be coded to control IP routing. ROUTE statements must follow
the MEDIA and NETWORK statements they are related to, or all ROUTE
statements may be placed anywhere after the last NETWORK statement as long
as each ROUTE statement specifies the MEDIANAME keyword.

Use the ROUTE statement in the TCPCFGxx member to make outbound route
selections from Unicenter TCPaccess.

The ROUTE statement determines:

■ Which router, if any, is used for an outgoing packet

■ Which local network is used to send the packet

■ Default routes when GateD is inactive

The three basic types of route entries, HOST ROUTE, NET/SUBNET, and
DEFAULT, are described in these paragraphs.

The HOST ROUTE entry describes one particular remote host that may have
special routing considerations or forwarding options.

The NET/SUBNET entry describes a remote network or subnet. Opinions differ
about whether a local host should know about a remote network's subnets. This
facility provides an entry should the need arise for a route definition to a
particular remote subnet.

The DEFAULT ROUTER entry describes which route should be selected when
no other HOST ROUTE or NET/SUBNET route entry has been defined for the
remote destination. At least one DEFAULT ROUTER entry should be defined.

4–2 Customization Guide

ROUTE Statement

When specifying the DEST entry, the destination internet address is a fully
qualified address in dot notation (for example, 127.0.0.2). With the
NET/SUBNET entry, the destination address is the internet address in dot
notation of the NET/SUBNET, and the HOST address is 0 (for example,
127.0.0.0). On the DEFAULT ROUTER entry, the specified internet address is
zeroes (for example, 0.0.0.0).

Whenever the outbound connection is being established, Unicenter TCPaccess
chooses the route in the following order. First, the route table is searched for an
exact match for the remote destination. If that is not found, it looks for a match
on the subnet if the subnet is part of one of your attached networks. If no match
is found for the subnet, then a match is attempted on the network. And finally, if
no match is found on the network, the first default route is chosen.

If multiple default ROUTE statements are present in the start-up configuration
files, the first statement becomes the selected default route. The order of
appearance in the TCPCGFxx file also corresponds to the sequence of a
NETSTAT ROUTE display.

For multihomed systems, if an interface is supplied to the route search routine,
that interface takes precedence, that is, a network route on the specified interface
takes precedence over a host route on a different interface.

The routing table is updated dynamically based on ICMP redirects received so
that the best routing is chosen depending on traffic on the network. If a local
router is determined to be dead, that router is not used. If a new connection
comes in on that router, or an ICMP redirect is received, the router is marked as
up and will be included in routing choices.

Internet Route Configuration 4–3

ROUTE Statement

ROUTE Statement Syntax
ROUTE DEST (host_address | subnet | network | DEFAULT)
 ROUTER (a.b.c.d)

 [LOCAL]
 [NONETCHECK]
 [MEDIANAME (media_name)]
 [MASK (mask)]
 [HOST]

DEST (host_address | subnet | network | DEFAULT)

Specifies the remote IP address on point-to-point links.

Note: Failure to set this parameter for point-to-point links may cause the
generation of incorrect routing table entries.

host_address Host IP address in dotted decimal notation.

subnet Subnet number in dotted decimal notation.

network Network number in dotted decimal notation.

DEFAULT Keyword to indicate a default route.

Default: None.

ROUTER (a.b.c.d) Specifies the router IP address in dotted decimal notation.

Default: None.

LOCAL When LOCAL is specified:

■ The destination specified by DEST (whether it is a host, a subnet, or a
network) is considered to be on the same network specified by the
MEDIANAME keyword.

■ The DEST and MEDIANAME keywords must be specified; the MASK is
optional. All other parameters cannot be specified.

NONETCHECK Indicates that the ROUTER is not required to be on a local subnet defined by a
NETWORK statement.

If there is a router on a subnet that is physically local to Unicenter TCPaccess, but
is not defined by a NETWORK statement, it can be used just like any other
router.

To define a ROUTE using this router, the DEST and ROUTER keywords should
be defined as usual and the NONETCHECK keyword must be included.

4–4 Customization Guide

ROUTE Statement

MEDIANAME (media_name)

Specifies the name on the associated NETWORK statement.

Default: If this option is not specified, the system tries to make the network
association based on the router information and the remote destination. If the
system cannot decide what interface to use, the statement fails.

MASK (mask) Specifies the subnet or network mask of the remote subnet/net in dot notation.

You can use a special mask, MASK(255.255.255.255) to specify a host entry.
However, the keyword HOST can be used instead.

Note: This operand should not be specified on default router entries.

Default: If the subnet is part of a network defined by a NETWORK statement, the
subnet mask defined on the NETWORK statement is used. Otherwise, the mask
for the class of network is used

HOST Indicates that the entry is for a host. This generates a mask of 255.255.255.255.

Note: You can specify MASK(mask) or HOST, but not both.

Subnets Are Local

Unicenter TCPaccess supports multiple subnets on a physical network (subnets
are local). This allows an interface to send directly within the local area network
(LAN) to hosts on the distinct subnets. The mechanism combines both the data
link and network layers. The link layer issues ARP requests and replies for the
multiple subnets, and the network layer forwards the datagrams directly to a
host instead of to a router. You can use the LOCAL parameter of the ROUTE
statement to activate this feature.

If there is a router on a subnet that is physically local to Unicenter TCPaccess, but
is not defined by a NETWORK statement, it can be used just like any other
router.

To define a ROUTE using this router, the DEST keyword (and optionally MASK)
should be defined as usual and the LOCAL keyword must be included.

Internet Route Configuration 4–5

ROUTE Statement

Usage Notes for the ROUTE Statement

GateD Influence If you are running Unicenter TCPaccess with GateD (optional), GateD updates
the routing table as required.

Statement Order ROUTE statements must follow the MEDIA and NETWORK statements to
which they are related or you can place all ROUTE statements anywhere after
the last NETWORK statement as long as each ROUTE statement specifies the
MEDIANAME keyword.

Automatic Network
Selection

In a multihomed environment, a specific remote destination may be accessible
only through one of the local interfaces.

If the remote destination is on one of the local subnets defined on a NETWORK
statement, the network selection automatically takes place.

If the remote destination is not on a local subnet, a ROUTE NET/SUBNET entry
should be defined indicating what local network to use to reach the connection,
unless the remote destination is accessible through routers on all interfaces.

Note: Network 127 is not a valid network number.

ROUTE Statement Examples

This table shows an example for subnet masks.

Destination Mask Host Address Types

127.0.0.1 255.0.0.0 0.0.0.1 Host

127.0.0.0 255.0.0.0 0.0.0.0 Network

127.128.1.0 255.0.0.0 0.128.1.0 Host

127.128.1.0 255.255.0.0 0.0.1.0 Host

127.128.1.0 255.255.255.0 0.0.0.0 Subnet

4–6 Customization Guide

ROUTE Statement

Example 1 In this example, router 129.1.128.1 is used for all remote destinations except
those on subnet 129.1.65.0.
MEDIA NAME(TOKEN1) TOKEN16
NETWORK IPADDRESS(129.1.128.2)
 SUBNET(255.255.255.0)
LCS DEVADDR(0400) NAME(T3172)
LINK.LCSNAME(T3172) ADAPTER(0)
MEDIA NAME(ETHER1) ETHERNET
NETWORK IPADDRESS(129.1.64.12)
 SUBNET(255.255.255.0)
 LINK LCSNAME(T3172) ADAPTER(2)
 .
 .
ROUTE DEST(DEFAULT) ROUTE(129.1.128.1) MEDIANAME(TOKEN1)
ROUTE DEST(129.1.65.0) ROUTE(129.1.64.1) MEDIANAME(ETHER1)

Example 2 In this example:

■ The local subnet mask for both nets is 255.255.0.0

■ These routers are on the ETHER1 network: 127.127.0.3, 127.127.0.4

■ There is one router on the ETHER2 network, 127.128.0.6

■ Router 127.127.0.3 is the default router

■ Hosts 129.192.192.002 and 129.192.192.003 on the HOST1 network have
packets forwarded to them through 127.127.0.3

■ Network 129.192.0.0 is reachable only through router 127.127.0.4

■ Network 129.193.0.0 is reachable only through router 127.128.0.6

■ Subnet 129.194.1.0 is reachable only through router 127.127.0.4

■ No default router is specified for the loopback network

■ The IP statement permits packet forwarding
*

IP FORWARD
*
* LOCAL NETWORK DEFINITIONS
*
MEDIA NAME(ETHER1) ETHERNET
NETWORK NAME(HOST1) IPADDRESS(127.127.0.1) SUBNET(255.255.0.0)
LCS DEVADDR(0400) NAME(T3172)
LINK.LCSNAME(T3172) ADAPTER(0)
MEDIA NAME(ETHER2) ETHERNET
NETWORK NAME(HOST2) IPADDRESS(127.128.0.1) SUBNET(255.255.0.0)
*
* HOST ROUTE ENTRIES
*
ROUTE DEST(129.192.192.002) ROUTE(127.127.0.3)
ROUTE DEST(129.192.192.003) ROUTE(127.127.0.3)
*

Internet Route Configuration 4–7

ROUTE Statement

* NETWORK/SUBNET ROUTE ENTRIES
*
ROUTE DEST(129.192.0.0) ROUTE(127.127.0.4)
ROUTE DEST(129.193.0.0) ROUTE(127.128.0.6)
ROUTE DEST(129.195.0.0) ROUTE(127.127.0.4)
ROUTE DEST(129.194.1.0) ROUTE(127.127.0.4)
 SUBNET(255.255.255.0)
*
* DEFAULT ROUTER ENTRIES
*
ROUTE DEST(0.0.0.0) ROUTE(127.127.0.3)
*
* END OF CONFIGURATION
*

4–8 Customization Guide

Chapter

5
TCP, UDP, RAW and IP Protocol
Configuration (TCPCFGxx)

This chapter provides guidelines to help you customize your use of protocols
with Unicenter TCPaccess.

The following topics are discussed in this chapter:

■ Fine-Tuning the Transmission Control Protocol—Describes how to tailor the
TCP parameters for your site

■ Fine-Tuning the User Datagram Protocol—Describes how to tailor UDP
parameters for your site

■ Fine-Tuning the RAW Protocol—Describes how to tailor RAW parameters
for your site

■ Fine-Tuning the Transmission Control Protocol—Describes how to tailor IP
parameters for your site

■ POOLDEF Settings—Describes the control block pools for TCPCFGxx

TCP, UDP, RAW and IP Protocol Configuration (TCPCFGxx) 5–1

Fine-Tuning the Transmission Control Protocol

Fine-Tuning the Transmission Control Protocol
For most sites, the default settings for the TCP statement do not need to be
changed. If you have specific requirements and need to adjust the values, this
section offers a description of the TCP parameters, found in member TCPCFGxx.

Most users will not need to specify a TCP statement. The TCP statement is most
often modified to change port number assignments. Some users may encounter
TCP implementations that will not tolerate attempts to use window scaling. Set
Scale (0) to suppress window scaling and, with it, timestamps.

TCP Statement Syntax
TCP [CONNECT (time)]
 [DELAYACK (number time)]
 [DEFQRCV (number)]
 [DEFQSND (number)]
 [DEFRCVBUF (number)]
 [DEFSNDBUF (number)]
 [FASTRX (number)]
 [FWIDLE (number)]
 [HASH (number)]
 [IPNOTIFY (number)]
 [KEEPALIVE (GARBAGE | NOGARBAGE)]
 [KEEPALIVECOUNT (number)]
 [KEEPALIVETIMER (number)]
 [MAXQLSTN (number)]
 [MAXQRECV (number)]
 [MAXQSEND (number)]
 [MAXRCVBUF (number)]
 [MAXRXMIT (number)]
 [MAXRXTIME (number)]
 [MAXSNDBUF (number)]
 [MAXTRECV (number)]
 [MAXTSEND (number)]
 [MINDEV (number)]
 [MINRXTIME (number)]
 [PORTASGN (n1[:m1] [n2:[m2]] ...)]
 [RTD (time)]
 [RTO (time)]
 [SCALE (number)]
 [TIMEWAIT (time)]
 [ZEROWINDOWPROBE (time)]

5–2 Customization Guide

Fine-Tuning the Transmission Control Protocol

CONNECT (time) Specifies the timeout period, in 0.01 second units, for trying to connect to a
remote host.

Range: Minimum: (RTD*4)+RTO.
 Maximum: 360000 (one hour).

Default: 7500 (75 seconds).

DELAYACK (number time)

Specifies the number of packets to receive before sending an acknowledge packet
and the maximum amount of time, in 0.01 second units, to wait before sending
an acknowledgment packet.

The TIMER parameter is set in the IFSPARM statement and specifies the time
interval for a timer interrupt.

Range: number: 0 – 100.
 time: value of TIMER keyword on IFSPARM statement in IJTCFG00 –
 100.

Default: (10, value of TIMER keyword on IFSPARM statement in IJTCFG00).

DEFQRCV (number) Specifies the default number of outstanding API TRECV or TRECVFR requests
that can exist on an endpoint.

Alias: DEFQRECV.

Range: 1- MAXQRECV.

Default: Four.

DEFQSND (number) Specifies the default number of outstanding API TSEND or TSENDTO requests
that can exist on an endpoint.

Alias: DEFQSEND.

Range: 1- MAXQSEND.

Default: Four.

TCP, UDP, RAW and IP Protocol Configuration (TCPCFGxx) 5–3

Fine-Tuning the Transmission Control Protocol

DEFRCVBUF (number) Specifies the default amount of receive buffer space for an endpoint or
OpenEdition (UNIX System Services) socket. The value can range from 512 to
1,048,576.

Note: This is the size limit for the socket receive buffer. The size of the receive
buffer can be set or reported with the SO_RCVBUF socket-level option.

Aliases: DEFLRECV, DEFLRCV, DEFRECVBUF.

For more information about UNIX System Services socket support, see the
C/Socket Programmer’s Reference.

Range: 4096 – MAXRCVBUF.

Default: 65344.

DEFSNDBUF (number) Specifies the default amount of send buffer space for an endpoint or UNIX
System Services socket. The value can range from 512 to 1,048,576.

This is the size limit for the socket send buffer. The size of the send buffer can be
set or reported with the SO_SNDBUF socket-level option. For more information
about UNIX System Services socket support, see the C/Socket Programmer’s
Reference.

Aliases: DEFLSEND, DEFLSND, DEFSENDBUF.

Range: 4096 – MAXSNDBUF.

Default: 65344.

FASTRX (number) Specifies the number of duplicate acknowledged packets to receive before
sending a fast retransmit of a packet. Specifying zero indicates that fast
retransmit should not be used.

Range: 0 – 256.

Default: Three.

FWIDLE (number) Specifies the amount of time a connection may remain idle after a TRELEASE
request has been issued. This parameter can be used to time out TCP sessions
that have started to close, but the remote end of the connection has not
completed its part of the close. Specifying zero disables this timeout feature. The
number is in units of 0.01 seconds.

Range: 1500 - 8640000 (24 hours).

Default: 60000 (10 minutes).

5–4 Customization Guide

Fine-Tuning the Transmission Control Protocol

HASH (number) Defines the number of entries for the TCP session lookup table. Larger numbers
reduce the chain length of synonyms in the lookup table. To support a very large
number of sessions, raising this number could reduce overhead matching
datagrams to sessions.

Range: 255 – 99999.

Default: 1021.

IPNOTIFY (number) Specifies the number of retransmits before notifying IP to get a new route, and
notifying the drivers to attempt to re-invoke the ARP protocols in case the
hardware address has changed.

Range: 1 – MAXRXMIT.

Default: Four.

KEEPALIVE (GARBAGE | NOGARBAGE)

Specifies the type of keepalive packet to send. If an UNIX System Services
sockets API user enables keepalive, this value is used.

Alias: KEEPALIVETYPE.

For more information about UNIX System Services socket support, see the
C/Socket Programmer’s Reference.

NOGARBAGE Indicates that the TCP keepalive packets should be sent
with no data. This value is usually appropriate as a remote
TCP implementation should be able to handle and respond
to this kind of packet, if properly implemented.

GARBAGE Indicates that the keepalive packet should be sent with one
byte of random data. This value is provided for
compatibility with erroneous TCP implementations.

Default: NOGARBAGE.

KEEPALIVECOUNT (number)

Specifies the maximum number of keepalive packets that are sent before the
connection is considered severed

Alias: KACOUNT.

Range: 2–256.

Default: Nine.

TCP, UDP, RAW and IP Protocol Configuration (TCPCFGxx) 5–5

Fine-Tuning the Transmission Control Protocol

KEEPALIVETIMER (number)

Specifies the time interval, in minutes, for TCP keepalive packets. If a sockets
API user enables TCP keepalive without specifying a time interval between
keepalive packets, this value is used.

Alias: KATIMER.

Range: One (one minute) - 1439 (approx. 24 hours).

Default: 120 minutes (two hours).

MAXQLSTN (listen) Specifies the maximum number of requests for connections or associations that
can be queued to a bound and enabled API endpoint.

Alias: MAXQLSTNvt.

The defqlstn (default qlstn value) is determined in the following matter:

■ If using BSD or OE sockets, defqlstn is set in the backlog parameter on the
sockets listen() call.

■ If using the assembler API, defqlstn is set to the value in the QLSTN=
parameter of the TBIND macro.

Note: The MAXQLSTN is the largest defqlstn value supported on any of the
above listen calls. defqlstn values greater than MAXQLSTN are silently trimmed.

Range: 1 - 255

Default: 25.

MAXQRECV (number) Specifies the maximum number of API TRECV or TRECVFR requests that can be
outstanding on an endpoint.

Alias: MAXQRCV.

Range: 1 – 256.

Default: 16.

MAXQSEND (number) Specifies the maximum number of API TSEND or TSENDTO requests that can
be outstanding on an endpoint.

Range 1 – 256.

Default: 16.

5–6 Customization Guide

Fine-Tuning the Transmission Control Protocol

MAXRCVBUF (number)

Specifies the maximum amount of receive buffer space for an endpoint or UNIX
System Services socket.

This is the size limit for the socket receive buffer. The size of the receive buffer
can be set or reported with the SO_RCVBUF socket-level option.

Aliases: MAXLRECV, MAXLRCV, MAXRECVBUF.

For more information about UNIX System Services socket support, see the
C/Socket Programmer’s Reference.

Range: 4096 - 1,048,576.

Default: 261376.

MAXRXMIT (number) Specifies the maximum number of retransmissions of a packet before breaking
the session.

Range: 1 – 255.

Default: 17.

MAXRXTIME (number)

Specifies the maximum time in 0.01 second units to which the retransmit timer
should be set.

Range: 100 (1 sec) - 6000 (one minute).

Default: 2000 (20 seconds).

MAXSNDBUF (number)

Specifies the maximum amount of send buffer space for an endpoint or UNIX
System Services socket.

 This is the size limit for the socket send buffer. The size of the send buffer can be
set or reported with the SO_SNDBUF socket-level option. For more information
about UNIX System Services socket support, see the C/Socket Programmer’s
Reference.

Alias: MAXLSEND, MAXLSND, MAXSENDBUF.

Range: 4096 - 1,048,576.

Default: 261376.

TCP, UDP, RAW and IP Protocol Configuration (TCPCFGxx) 5–7

Fine-Tuning the Transmission Control Protocol

MAXTRECV (number) Specifies the size of the largest TRECV that can be issued. It also controls the
maximum size of a datagram that can be received or reassembled by the IP layer.
For UDP and RAW type sockets, no datagram greater than this size is accepted
by the IP layer.

The maximum value to which this can be set is:

■ 65535 for TCP

■ 65467 for UDP

■ 65475 for RAW

This value does not directly control any function issued by an UNIX System
Services socket.

Aliases: MAXLTRCV, MAXLTRECV, MAXTRCV.

Range: 512 - Lower of MAXRCVBUF or 262144.

Default: 16336.

MAXTSEND (number) Specifies the size of the largest TSEND that can be issued. The maximum value
to which this can be set is:

■ 65535 for TCP

■ 65467 for UDP

■ 65475 for RAW

This value does not directly control any function issued by an UNIX System
Services socket.

Aliases: MAXLTSND, MAXLTSEND, MAXTSND.

Range: 512 - Lower of MAXSNDBUF or 262144.

Default: 16336.

MINDEV (number) Specifies the minimum time in 2.5 millisecond units to set the round trip time
deviation. Setting this parameter requires an understanding of Van Jacobson’s
RTT algorithm.

Range: value of TIMER keyword on IFSPARM statement in IJTCFG00 (converted
to units of 2.5 ms) – 1000.

Default: 40 (0.1 seconds).

5–8 Customization Guide

Fine-Tuning the Transmission Control Protocol

MINRXTIME (number) Specifies the interval, in 0.01 second units, to which the retransmit timer should
be set. The TIMER parameter is set in the IFSPARM statement. It specifies the
time interval for a timer interrupt.

Range: minimum: Greater of IFSPARM TIMER or 25.
 maximum: MAXRXTIME.

Default: 100.

PORTASGN (n1[:m1] [n2:[m2]] ...)

Specifies the range of port numbers from which a port is assigned when:

■ An API application issues a TBIND request with OPTCD=ASSIGN, or

■ A socket program issues a bind() request with port number specified as 0.

A port number is assigned and returned to the application in the function
response.

Port numbers are specified as one or more ranges, from n1 to m1, n2 to m2, and
so on. A single number may be specified indicating a single port range.

Note: If Unicenter TCPaccess is configured in a Common INET (CINET)
configuration in the Unix System Services environment, the range of ports
specified by the INADDRANYPORT and INADDRCOUNT keywords on the
NETWORK statement in the BPXPARM configuration must be removed from
the PORTASGN specification. This will prevent accidental use of ports managed
by Unix Services.

For additional information regarding CINET configuration, refer to the section
on Common INET Support in this manual and the IBM UNIX System Services
library.

Alias: TADDRASGN,TADDRASSIGN, or PORTASSGN

Range: 1 – 65535.

Default: 4096 : 65535.

TCP, UDP, RAW and IP Protocol Configuration (TCPCFGxx) 5–9

Fine-Tuning the Transmission Control Protocol

RTD (time) Specifies the initial round trip deviation (RTD), in 0.01 second units, to use for a
connection.

Note: RTD and RTO combine to provide the initial timeout value for a
connection.

Alias: ROUNDTRIPDEV.

Range: Value of TIMER keyword on IFSPARM statement in IJTCFG00 - 6000
(one minute).

Default: 300 (three seconds).

RTO (time) Specifies the initial retransmission timeout value, in 0.01 second units, to use for
a connection.

 Note: RTD and RTO combine to provide the initial timeout value for a
connection.

Alias: ROUNDTRIPINIT.

Range: Value of TIMER keyword on IFSPARM statement in IJTCFG00 - 6000
(one minute).

Range: 0 – 6000.

Default: Zero.

SCALE (number) Specifies the window scaling amount for applications that use expanded
windows. This is described in RFC 1323. The window scaling option is sent if the
option was received from the other side, or if the scaling amount is not zero.

Note: Coding zero turns off window scaling and the use of timestamps.

Range: 0 – 14.

Default: Four.

TIMEWAIT (time) Specifies the amount of time, in 0.01 second units, a connection spends in the
time wait state.

Range: value of TIMER keyword on IFSPARM statement in IJTCFG00 - 180000
(30 minutes).

Default: 1000 (10 seconds).

5–10 Customization Guide

Fine-Tuning the Transmission Control Protocol

ZEROWINDOWPROBE (time)

Specifies the amount of time, in seconds, that Unicenter TCPaccess uses to
override the default TCP Persist Timer. If 0 is coded, the probes will be sent at
increasing intervals until the MAX retransmission interval is reached, at which
time probes will continue to be sent. If a NONZERO value is coded, the probes
will be issued at the specified interval value.

Range: 0 to 1800 (the number of seconds in 30 minutes).

Default:Zero.

TCP Examples

This example shows the use of the TCP statement to change the port ranges.
TCP PORTASGN (4096:65535)

This example shows a configuration using Port Security.
===========================++++=======================================
* TCP Task Group Configuration for Port Security Member - TCPBND00 *
* *
* This member is used to define security for port use by all network *
* applications. The port rules defined in this member are enabled by *
* the TCPCFGxx configuration member statement BINDSEC. *
* *
* The first rule encountered matching the rule criteria is applied. *
* If an application does not match any PORT rule criteria and at *
* least one PORT rule exists for the requested port, the port will be *
* denied. *
* *
* If a Port rule is not specified for a port, then the port is *
* available for an application depending on the so_reuseaddr socket *
* setting for all applications attempting to use the port. *
* *
* This member is an example only. *
* Do not attempt to use this member without updating the PORT *
* rules to accurately specify application jobnames and ports. *
* Invalid jobnames will disable a port. *
* The Port rules have been commented to prevent accidental usage. *
* *
==

* The following rule allows any application with a job identification
* starting with characters RUNTLN to share port 23. If the application
* specifies a bind() function call with 0 specified as the IP address,
* then the application will be automatically bound to the IP address
* specified with the BIND keyword. The application will automatically
* be Registered with the Work Load Manager with the location name of
* TN3270SSL.

*PORT NUM(23)
* PROTO(TCP)
* JOBN(RUNTLN*)
* ACCESS(SHR)
* BIND(141.202.198.150)
* WLM(TN327OSSL)

TCP, UDP, RAW and IP Protocol Configuration (TCPCFGxx) 5–11

Fine-Tuning the Transmission Control Protocol

* The following rule allows any application with a job identification
* starting with characters RUNSTLN or RUNTCP to share port 23.
* The application will automatically be Registered with the Work
* Load Manager with the location name of TN3270E.

*PORT NUM(23)
* PROTO(TCP)
* JOBN(RUNTCP*,RUNSTLN*)
* ACCESS(SHR)
* WLM(TN327OE)

* The following rule allows any application with a job identification
* starting with characters RUNTLN or RUNFTP to share ports 20 and 21.
* The application will automatically be Registered with the Work
* Load Manager with the location name of FTPSERVER.

*PORT NUM(2O,21)
* PROTO(TCP)
* JOBN(RUNTCP*,RUNFTP*)
* ACCESS(SHR)
* WLM(FTPSERVER)

* The following rule applies to the first application with the job
* identifier of MYAPP. This may not be shared with any other
* application. An additional SAF security check will performed.

*PORT NUM(5555)
* PROTO(TCP)
* JOBN(MYAPP)
* ACCESS(NOSHR)
* SAF(EZB.PORTACCESS.sysname.tcpname.resname)

* The following rule disables the use of the port in the range specified
* by the NUM keyword. All requests for any port within the range
* specified will be denied.

*PORT NUM(4000:4095)
* PROTO(TCP)
* JOBN(nocanuse)
* ACCESS(RESTRICT)

* The following rule applies to the first application with the job
* identifier of RUNTCP. This may not be shared with any other
* application.

*PORT NUM(53)
* PROTO(UDP)
* JOBN(RUNTCP)

5–12 Customization Guide

Fine-Tuning the User Datagram Protocol

Fine-Tuning the User Datagram Protocol
For most sites, the default settings for the UDP statement do not need to be
changed. If you have specific requirements and need to adjust the values, this
section offers a description of the UDP parameters, found in member
TCPCFGxx. It is recommended that you make changes to this statement only on
the advice of Technical Support.

UDP Statement Syntax
UDP [CHECKSUM | NOCHECKSUM]
 [DEFQRCV (number)]
 [DEFQSND (number)]
 [DEFRCVBUF (number)]
 [DEFSNDBUF (number)]
 [MAXQLSTN (number)]
 [MAXQRECV (number)]
 [MAXQSEND (number)]
 [MAXRCVBUF (number)]
 [MAXSNDBUF (number)]
 [MAXTRECV (number)]
 [MAXTSEND (number)]
 [PORTASGN (n1[:m1] [n2:[m2]] ...)]

CHECKSUM | NOCHECKSUM

Specifies whether to compute checksums on UDP datagrams sent by the host.

Default: CHECKSUM.

DEFQRCV (number) Specifies the default number of outstanding API TRECV or TRECVFR requests
that can exist on an endpoint.

Alias: DEFQRECV.

Range: 1-MAXQRECV.

Default: Eight or MAXQRECV.

DEFQSND (number) Specifies the default number of outstanding API TSEND or TSENDTO requests
that can exist on an endpoint.

Alias: DEFQSEND.

Range: 1-MAXQSEND.

Default: Eight or MAXQSEND.

TCP, UDP, RAW and IP Protocol Configuration (TCPCFGxx) 5–13

Fine-Tuning the User Datagram Protocol

DEFRCVBUF (number) Specifies the default size of the circular API receive buffer. This is the limit of the
total amount of data that can be requested in all outstanding TRECV or
TRECVFR requests.

Aliases: DEFLRECV, DEFLRCV, DEFRECVBUF.

Default: 72000 (or MAXRCVBUF).

DEFSNDBUF (number)

Specifies the default size of the circular API send buffer. This is the limit of the
total amount of data that can exist for all outstanding TSEND or TSENDTO
requests.

Aliases: DEFLSEND, DEFLSND, DEFSENDBUF.

Range: 4096 – 144000.

Default: 72000 (or MAXSNDBUF.

MAXQLSTN (number) Specifies the maximum number of requests for connections or associations that
can be queued to a bound and enabled API endpoint.

Alias:MAXQLSTNvt.

The defqlstn (default qlstn value) is determined in the following manner:

■ If using BSD or OE sockets, defqlstn is set in the backlog parameter on the
sockets listen() call

■ If using the assembler API, defqlstn is set to the value in the QLSTN=
parameter of the TBIND macro

The MAXQLSTN is the largest defqlstn value supported on any of the above
listen calls.

Note: defqlstn values greater than MAXQLSTN are silently trimmed.

Range: 1 – 255.

Default: 25.

5–14 Customization Guide

Fine-Tuning the User Datagram Protocol

MAXQRECV (number) Specifies the maximum number of API TRECV or TRECVFR requests that can be
outstanding on an endpoint.

 Alias: MAXQRCV.

Range: 1 – 16.

Default: 16.

MAXQSEND (number) Specifies the maximum number of API TSEND or TSENDTO requests that can
be outstanding on an endpoint.

Alias: MAXQSND.

Range: 1 – 16.

Default: 16.

MAXRCVBUF (number)

Specifies the maximum amount of receive buffer space for an endpoint or UNIX
System Servicessocket. The value can range from 512 to 1,048,576.

This is the size limit for the socket receive buffer. The size of the receive buffer
can be set or reported with the SO_RCVBUF socket-level option.

Aliases: MAXLRECV, MAXLRCV, MAXRECVBUF.

For more information about UNIX System Services socket support, see the
C/Socket Programmer’s Reference.

Range: 4096 – 1048576.

Default: 144000.

TCP, UDP, RAW and IP Protocol Configuration (TCPCFGxx) 5–15

Fine-Tuning the User Datagram Protocol

MAXSNDBUF (number)

Specifies the maximum amount of send buffer space for an endpoint or UNIX
System Services socket. The value can range from 512 to 1,048,576.

This is the size limit for the socket send buffer. The size of the send buffer can be
set or reported with the SO_SNDBUF socket-level option. For more information
about UNIX System Services socket support, see the C/Socket Programmer’s
Reference.

Aliases: MAXLSEND, MAXLSND, MAXSENDBUF.

Range: 4096 – 1048576.

Default: 144000.

MAXTRECV (number) Specifies the size of the largest TRECV that can be issued. It also controls the
maximum size of a datagram that can be received or reassembled by the IP layer.

For UDP and RAW type sockets, no datagram greater than this size will be
accepted by the IP layer. The maximum value to which this can be set is 65467.
This value does not directly control any function issued by an UNIX System
Services socket.

Aliases: MAXLTRCV, MAXLTRECV, MAXTRCV.

Range: 512 – 65467.

Default: 9000.

MAXTSEND (number) Specifies the size of the largest TSEND that can be issued. The maximum value
to which this can be set is 65467. This value does not directly control any
function issued by an UNIX System Services socket.

Aliases: MAXLTSND, MAXLTSEND, MAXTSND.

Range: 512 – 65467.

Default: 9000.

5–16 Customization Guide

Fine-Tuning the User Datagram Protocol

PORTASGN (n1 [:m1] [n2: [m2]] ...)

Specifies the range of port numbers from which a port is assigned when:

■ An API application issues a TBIND request with OPTCD=ASSIGN, or

■ A socket program issues a bind() request with port number specified as zero.

A port number is assigned and returned to the application in the function
response.

Port numbers are specified as one or more ranges, from n1 to m1, n2 to m2, and
so on. A single number may be specified indicating a single port range.

Note: If Unicenter TCPaccess is configured in a Common INET (CINET)
configuration in the Unix System Services environment, the range of ports
specified by the INADDRANYPORT and INADDRCOUNT keywords on the
NETWORK statement in the BPXPARM configuration must be removed from
the PORTASGN specification. This will prevent accidental use of ports managed
by Unix Services.

For additional information regarding CINET configuration, refer to the section
on Common INET Support in this manual and the IBM UNIX System Services
library.

Alias: TADDRASGN,TADDRASSIGN, or PORTASSGN

Range: 1 – 65535.

Default: 4096 : 65535.

UDP Examples

This example shows the usage of the UDP statement:
UDP PORTASGN (4096:65535)

TCP, UDP, RAW and IP Protocol Configuration (TCPCFGxx) 5–17

Fine-Tuning the RAW Protocol

Fine-Tuning the RAW Protocol
Any IP protocol other than TCP pr UDP is known as a RAW protocol. For most
sites, the default settings for the RAW statement do not need to be changed. If
you have specific requirements and need to adjust the values, this section offers
a description of the RAW parameters, found in member TCPCFGxx.

Note: It is recommended that you make changes to this statement only on the
advice of Technical Support.

RAW Statement Syntax
RAW [DEFQRCV (number)]
 [DEFQSND (number)]
 [DEFRCVBUF (number)]
 [DEFSNDBUF (number)]
 [MAXQRECV (number)]
 [MAXQSEND (number)]
 [MAXRCVBUF (number)]
 [MAXSNDBUF (number)]
 [MAXTRECV (number)]
 [MAXTSEND (number)]

DEFQRCV (number) Specifies the default number of outstanding API TRECV or TRECVFR requests
that can exist on an endpoint.

Alias: DEFQRECV.

Range: 1-MAXQRECV.

Default: Eight or MAXQSEND.

DEFQSND (number) Specifies the default number of outstanding API TSEND or TSENDTO requests
that can exist on an endpoint.

Alias: DEFQSEND.

Range: 1- MAXQSEND.

Default: Eight or MAXQRECV.

DEFRCVBUF (number) Specifies the default size of the circular API receive buffer. This is the limit of the
total amount of data that can be requested in all outstanding TRECV or
TRECVFR requests.

Aliases: DEFLRECV, DEFLRCV, DEFRECVBUF.

Default: 72000 or MAXRCVBUF.

5–18 Customization Guide

Fine-Tuning the RAW Protocol

DEFSNDBUF (number) Specifies the default size of the circular API send buffer. This is the limit of the
total amount of data that can exist for all outstanding TSEND or TSENDTO
requests.

 Aliases: DEFLSEND, DEFLSND, DEFSENDBUF.

Default: 72000 or MAXSNDBUF.

MAXQRECV (number) Specifies the maximum number of API TRECV or TRECVFR requests that can be
outstanding on an endpoint.

Alias: MAXQRCV.

Default: 16.

MAXQSEND (number) Specifies the maximum number of API TSEND or TSENDTO requests that can
be outstanding on an endpoint.

Alias: MAXQSND.

Default: 16.

MAXRCVBUF (number)

Specifies the maximum amount of receive buffer space for an endpoint or UNIX
System Servicessocket.

This is the size limit for the socket receive buffer. The size of the receive buffer
can be set or reported with the SO_RCVBUF socket-level option.

Aliases: MAXLRECV, MAXLRCV, MAXRECVBUF.

For more information about UNIX System Services socket support, read the
C/Socket Programmer’s Reference.

Range: 512 – 1048576.

Default: 144000.

TCP, UDP, RAW and IP Protocol Configuration (TCPCFGxx) 5–19

Fine-Tuning the RAW Protocol

MAXSNDBUF (number)

Specifies the maximum amount of send buffer space for an endpoint or UNIX
System Service socket.

This is the size limit for the socket send buffer. The size of the send buffer can be
set or reported with the SO_SNDBUF socket-level option. For more information
about UNIX System Services socket support, see the C/Socket Programmer’s
Reference.

Aliases: MAXLSEND, MAXLSND, MAXSENDBUF.

Range: 512 – 1048576.

Default: 144000.

MAXTRECV (number) Specifies the size of the largest TRECV that can be issued. It also controls the
maximum size of a datagram that can be received or reassembled by the IP layer.
No datagram greater than this size will be accepted by the IP layer.

This value does not directly control any function issued by an UNIX System
Services socket.

Aliases: MAXLTRCV, MAXLTRECV, MAXTRCV.

Range: 512 – 65475.

Default: 9000.

MAXTSEND (number) Specifies the size of the largest TSEND that can be issued. The maximum value
to which this can be set is 65475. This value does not directly control any
function issued by an UNIX System Services socket. Alias: MAXLTSND.

Default: 9000.

5–20 Customization Guide

Fine-Tuning the Internet Protocol

Fine-Tuning the Internet Protocol
The IP statement controls the operation of the Internet layer.

For information about the IP routing statement, read the chapter “Internet Route
Configuration.”

IP Statement Syntax
IP [FORWARD | NOFORWARD]
 [GATED (gated_config) | NOGATED]
 [REASSEMBLYTIMEOUT (timeout)]
 [TIMETOLIVE (number)]
 [MAXVIPA=max_vipa)]
 [TYPEOFSERVICE (number)]

FORWARD | NOFORWARD

Specifies whether forwarding is allowed in a multihomed environment. If FWD
is specified, hosts on one local interface can forward to hosts on another local
interface.

Default: NOFORWARD.

GATED(gated_config) | NOGATED

Specifies the use of the GateD routing protocol. The GateD configuration
member is specified by gated_config

Default: NOGATED.

REASSEMBLYTIMEOUT(number)

Specifies the number of seconds to allow datagram fragments to reassemble.
Fragments that remain incomplete after this time are discarded.

Range: 1-120.

Default: 30.

TCP, UDP, RAW and IP Protocol Configuration (TCPCFGxx) 5–21

POOLDEF Settings

TIMETOLIVE (number)

The parameters specify the IP Time To Live (TTL) used in packets sent by the
high level protocols. TTL was meant to be a time limit specifying how many
seconds a packet sent by a host can be used before a packet is considered expired
by IP routers and gateways forwarding the packet. More realistically, the value
is viewed as the maximum number of IP routers or gateways the packet is
allowed to traverse before being discarded.

Allowable values are the decimal values 1 through 255.

Default: 30.

TYPEOFSERVICE (number)

The TOS parameters specify the Internet protocol (IP) type of service (TOS) used
in packets sent by the high level protocols. The TOS field is generally unused
and is recommended by the Internet Host Requirements RFC to be set to zero
unless IP routing is being done based on the TOS field contents.

Allowable values are the decimal values 0 through 255.

Routers that utilize Weighted Fair Queueing (WFQ) use IP TOS. IF WFQ is used
in your network, a default TOS should be set.

Default: Zero.

MAXVIPA(number) Specifies the maximum number of active dynamic VIPAs.

The keyword value must be an integer in the range of 32 through 255. Using the
UPDATE operator command, this limit can be increased after the Unicenter
TCPaccess address space has started but can only be decreased when recycling
the Unicenter TCPaccess address space.

Default: 32.

POOLDEF Settings
The POOLDEF statement is used to define pools of control blocks needed to run
the Unicenter TCPaccess. The pool definitions specify an initial amount, an
expansion amount, and a minimum amount to limit contraction. You can adjust
these numbers to minimize expansion and contraction and improve efficiency.

5–22 Customization Guide

Chapter

6
Domain Name Resolver (DNR)
Configuration

This chapter provides an overview of the information required to customize
Unicenter TCPaccess.

The following topics are discussed in this chapter:

■ Introducing the Domain Name Resolver (DNR)—Describes the basic
concepts of domain name resolution

■ Services Provided by DNR—Describes the services provided by the domain
name resolver

■ Major Components of the Domain Name—Describes the domain name
space, name servers and resolvers

■ Initial DNR Customization—Provides a quick startup customization for
DNR

■ Configuring DNR in LOCAL or GLOBAL Mode—Describes how to set up
DNR for local or global resolution

■ Primary DNR Configuration Member (DNRCFGxx)—Describes DNRCFGxx.

■ Secondary DNR Members—Describes the secondary DNR members such as
DNRHSTxx, DNRALCxx, and so on

■ Examples of DNR Customization—Provides several examples of DNR
configurations for different environments.

Domain Name Resolver (DNR) Configuration 6–1

Introducing the Domain Name Resolver (DNR)

Introducing the Domain Name Resolver (DNR)
The Domain Name Resolver (DNR) information base provides information about
network objects by answering queries. To get information from the DNR,
provide the name of some object known to the DNR. The DNR searches for the
information associated with that name or attribute and returns the information.

The DNR task group provides services for both Unicenter TCPaccess and its API
application programs. DNR configuration members must be configured with
site-specific information. Without site-specific configuration, Unicenter
TCPaccess itself and Unicenter TCPaccess users must specify Internet addresses
in attempts to communicate with remote hosts. Any site that wants to
communicate with hosts by specifying a name must configure the DNR
members.

Services Provided by DNR
DNR currently provides these services, with either the dirsrv() API call or the
DNRGET TSO command:

■ Given a host name, returns network addresses

■ Given a host name, returns the CPU and operating system information

■ Given a host name, returns a list of well known services supported by host

■ Given a host name, returns a list of host names designated as mail routers for
the given host

■ Given an alias name, returns the official host name and network address

■ Given a network name, returns the network number

■ Given a network number, returns the network name

■ Given a protocol name and service name, returns the associated transport
protocol address (that is, TCP or UDP port number)

■ Given a TCP or UDP port number, returns the associated protocol and
service names

■ Given a protocol name, returns the official protocol number

■ Given an official protocol number, returns the protocol name

■ Given an RPC service name, returns an RPC service number

■ Given an RPC service number, returns an RPC service name

6–2 Customization Guide

Major Components of the Domain Name System (DNS)

Major Components of the Domain Name System (DNS)
The Domain Name System (DNS) has the following major components:

■ Domain name space—A tree structured name space that corresponds to the
naming hierarchy of nodes (or hosts) in the name space.

■ Name servers—Hold information about the domain name space and provide
answers to resolver's requests.

■ Resolvers—Extract information from name servers in response to client
requests. DNR implements the resolver portion of the DNS and queries
name servers for responses.

Locally Managed Names

Local names consist of those names defined in locally maintained configuration
data sets, and can be any one of the following types:

■ Alias name (for hosts only)

■ Network name

■ Service name

■ Protocol name

Such names are case insensitive and consist of alphanumeric characters from the
EBCDIC character set (a-z, A-Z, 0-9). The dash (-) and underscore (_) characters
can be used as long as they are embedded within the name (that is, does not
appear at the beginning or end of the name). Locally managed names must be
less than or equal to 40 characters in length.

Domain Name Specification

The DNS identifies hosts by the hierarchical domain name space. Using domain
names, each DNS node is represented by a label that is the simple name of the
node. A fully qualified domain name describes a path through the DNS to a
particular node, starting with the top-level (root) node. The name is formed by
concatenating the simple names (or labels) of each node in right-to-left sequence
by periods (.) starting with the top-level domain.

A four-level domain name appears as:
level-4.level-3.level-2.level-1.

The period at the end of a domain name represents the root of the DNS and
indicates the name is fully qualified. A domain name not terminated with a
period is assumed to be partially qualified. The DNR constructs fully qualified
names by appending qualifiers from a search list in a predetermined order.

Domain Name Resolver (DNR) Configuration 6–3

Major Components of the Domain Name System (DNS)

Simple domain names (that is, domain name labels) are case insensitive and
consist of alphanumeric characters from the EBCDIC character set (a-z, A-Z, 0-9).
The dash (-) and underscore (_) characters can be used as long as they are
embedded within the name (that is, do not appear at the beginning or end of the
name). Simple domain names must be less than or equal to 63 characters in
length, and fully qualified domain names must be less than or equal to 255
characters in length, including the terminating period.

How DNR Resolves Host Names

In order for Unicenter TCPaccess to make a connection to a host on the network,
it must know the IP address of that host before it sends out the first packet. You
can supply the address (for example, telnet 138.47.118.32), or you can give the
name (for example, telnet hobbes) and do a search to map that name to an IP
address. This search is the primary function of DNR.

From FTP2, give the command OPEN HOBBES to connect to the remote host
named HOBBES.

To resolve this name into an IP address that can be placed in a network packet,
DNR makes these checks:

■ Checks the DNRALCxx member to see if HOBBES is an alias. If there is a
match, DNR uses the fully qualified name in the alias file and proceeds to the
next step.

 Since HOBBES is not a fully qualified name (it does not end in a period),
DNR appends the entries found in the DNRSLCxx member in an attempt to
create one and checks the DNRALCxx table again.

Note: This example uses ND.EDU. and a period (.) as the search list entries.

 If there is a match at this point, it is for an entry with an associated IP
address and the check is completed.

■ Checks to see if DNR is in GLOBAL or LOCAL mode for this request.

 If DNR is in LOCAL mode, it searches the DNRHSTxx table with the fully
qualified names HOBBES.ND.EDU. and HOBBES. If there is no match, DNR
returns indicating no match was made.

 If DNR is in GLOBAL mode, it sends out queries to all name servers listed in
the DNRNSCxx member for HOBBES.ND.EDU. and HOBBES.

– If it does not receive a positive response in the allotted time (set by the
DNR parameter of the GLOBAL statement in APPCFGxx), it returns
indicating a timeout condition.

– If it receives a negative response from all servers, it returns indicating no
match was made.

6–4 Customization Guide

Initial DNR Customization

DNR Suffix Conventions

Like other Unicenter TCPaccess configuration members, the DNR software ships
with all task group members specified with the default 00. In other words, the
primary configuration member is DNRCFG00. However, these members can be
specified as something other than the default. Therefore, the members described
in this document use xx (that is, DNRCFGxx), to indicate that the last two digits
can be user-specified.

CAUTION! It is recommended that you make a copy of the DNRCFG00 that is shipped
with Unicenter TCPaccess. If you apply SMP/E maintenance, the original DNRCFG00
may be overwritten.

Initial DNR Customization
Minimal DNR customization must occur before using Unicenter TCPaccess for
the first time. DNR, as distributed, is set to run in LOCAL mode. This means that
all host addresses are resolved from either DNRALCxx or DNRHSTxx. Run the
initial test in this mode to verify that name resolution is performed correctly. If
you have network name servers, you can configure DNR to point to them for
name resolution.

DNR configuration changes are implemented by either:

■ Stopping (STOP) and starting (START) the DNR task group

■ Recycling the Unicenter TCPaccess address space

Note: Many Unicenter TCPaccess services, including SNMP, NFS, and SMTP, do
not work properly if DNR is not configured properly.

Domain Name Resolver (DNR) Configuration 6–5

Initial DNR Customization

The initial changes for each of the primary DNR configuration members are
shown below.

DNR Member
Name

Description

DNRCFGxx This is the primary configuration member and contains pointers to the other members.

The minimum change required for this member is to make a copy of the default
DNRCFG00 in the PARM library and change the last two digits.

DNRHSTxx This DNR host table is used by DNR in LOCAL mode to resolve host names. You
must define LOCAL DNR usage in the GLOBAL statement in member APPCFGxx.

In LOCAL mode, any syntactically correct host name is valid. In GLOBAL mode, the
host names must match the server definitions.

Note: It is recommended that the LOCAL host be defined first in this member.

The minimum change required for this member is to make a copy of the default
DNRHST00 and change the last two digits. Enter this new name in the HOSTTABLE
parameter of your DNRCFGxx member. Modify or add an entry to map the fully
qualified name for this usage of Unicenter TCPaccess to its IP address.

DNRALCxx This DNR alias table identifies the Unicenter TCPaccess host name, any alias names
for hosts.

If you are running in global mode, you can place any host name entries here that are
not defined on the name servers you are using.

The alias table is searched in both modes before either the host table or the network
name servers.

The minimum changes required for this member are:

1. Make a copy of the default DNRALC00.

2. Change the last two digits.

3. Enter the new name in the ALIAS parameter of your DNRCFGxx member.

4. Modify or add an entry to map the Unicenter TCPaccess subsystem ID to the fully
qualified host name for the system.

 The subsystem name must be defined as an alias. It is recommended that the
LOCAL host be defined first in this member.

5. The four-character SYSNAME (MVS system name) defined in IEASYSxx should
map to your local IP address.

6–6 Customization Guide

Initial DNR Customization

DNRNSCxx This DNR name server table lists the names and IP addresses of the name servers
DNR uses to resolve host names or addresses.

There are no changes required for this member.

DNR is initially set up to run in LOCAL mode and the NAMESERVER parameter in
DNRCFGxx is set to NONE. (And the DNR parameter in the APPCFGxx GLOBAL
statement is set to LOCAL.)

DNRSLCxx This table makes fully qualified names out of partially qualified ones. It appends the
entries in this table to the name provided and attempts to resolve it.

The minimum changes required for this member are:

1. Make a copy of the default DNRSLC00.

2. Change the last two characters.

3. Enter this new name in the SEARCHLIST parameter of your DNRCFGxx member.

4. Modify the OUR.COM entry, inserting your own domain name.

With these minimum configuration changes in place, Unicenter TCPaccess is able
to resolve its own name and IP address. However, you are not able to address
hosts in your network by name with the client commands. To do this, you must
add entries for them to either the DNRHSTxx or DNRALCxx members.

You can use the DNRGET command (see the System Management Guide for
information about this command) to query DNR and verify it is working
correctly.

Domain Name Resolver (DNR) Configuration 6–7

Configuring DNR in LOCAL or GLOBAL Mode

Configuring DNR in LOCAL or GLOBAL Mode
The DNR task group is an information base that keeps track of hosts in the
network. It consists of locally configured information and optional global
information. Corresponding to this data, Unicenter TCPaccess DNR may be
configured in LOCAL mode, defined in the GLOBAL statement in member
APPCFGxx. Likewise, Unicenter TCPaccess users can write applications that
issue the DIRSRV macro (used to invoke the DNR facilities), specifying LOCAL
resolution.

■ LOCAL requests instruct DNR to search locally configured configuration
members to satisfy DNR queries

■ GLOBAL requests are resolved using the DNR implementation of the
Domain Name System

The configuration data read by the DNR at initialization is contained in these
members of the PARM data set. This table lists the required member
configuration:

Unicenter TCPaccess AP Member
Name

Local
Mode

Global
Mode

Local
Requests

Global
Requests

DNRCFGxx Required Required Required Required

DNRHSTxx Required Required Required Required

DNRALCxx Required Required Required Required

DNRSLCxx Required Required Required Required

DNRNSCxx N/A Required N/A Required

DNRNPCxx Optional Required Optional Required

DNRPRTxx N/A N/A Optional Optional

DNRNETxx N/A N/A Optional Optional

DNRSVCxx N/A N/A Optional Optional

DNRRPCxx N/A N/A Optional Optional

Secondary DNR Members describes each of the DNR configuration members.

CAUTION!When customizing the DNR task group, do not change the PARM
members shipped with Unicenter TCPaccess. These members are under SMP/E control
and may be replaced when maintenance is applied. Rather, make a copy of the member
you want to customize, changing the default suffix 00 to your own unique suffix (for
example, 01).

6–8 Customization Guide

Primary DNR Configuration Member (DNRCFGxx)

Primary DNR Configuration Member (DNRCFGxx)
The primary DNR configuration member in the PARM data set is DNRCFGxx. It
specifies the main configuration parameters for the DNR task group. It also
specifies DNR initialization parameters and the names of the secondary DNR
configuration members.

You should:

1. Make a copy of the default DNRCFG00 in the PARM library.

2. Change the last two digits.

In the new copy:

a. Set the APISUBSYS (if different than the default ACSS).

b. Specify the names of the secondary DNR configuration members.

3. For the default DNRCFG00 member, specify CNFG(xx) in the START DNR
command in the STARTxx member of the PARM data set.

POOLDEF Statement

The first statement in the DNRCFGxx member is the POOLDEF statement.

CAUTION! The POOLDEF statement specifies the parameters related to a required
storage pool named DSRB. This pool must be defined in this member; do not delete this
POOLDEF statement as there are no defaults for the associated storage pool.

Note: IFS storage pool utilization can be monitored using the POOL operator
command. You might need to adjust the parameters associated with these pools.
Do not change the POOLDEF parameter unless monitoring indicates that a
change is needed. For tuning purposes, issue the POOL operator command and
adjust accordingly based on low water mark and buffer amounts allocated. In all
cases where the POOLDEF statements are altered, exercise care in implementing
these changes.

For information on POOLDEF statement syntax, refer to the POOLDEF
Statement in the chapter “Defining Control Block Pools”.

Domain Name Resolver (DNR) Configuration 6–9

Primary DNR Configuration Member (DNRCFGxx)

DNR Statement Syntax

Use this syntax with the DNR statement:
DNR [ALIAS (DNRALCxx)]
 [APISUBSYS (subsystem_name)]
 [CYCLEMAX (number)]
 [HOSTTABLE (DNRHSTxx)]
 [INTERNALTRACE | NOINTERNALTRACE]
 [MAXSENDS (number)]
 [MAXTIME (number)]
 [NAMESERVER (DNRNSCxx)]
 [NETWORK (DNRNETxx)]

 [NETWORKPREF (DNRNPCxx)]
 [PROTOCOL (DNRPRTxx)]
 [QUERYWAIT (number)]
 [RECURSIVE | NONRECURSIVE]
 [RPCNAMES (DNRRPCxx)]
 [SEARCHLIST (DNRSLCxx)]
 [SERVICES (DNRSVCxx)]
 [TRACE | NOTRACE]

ALIAS (DNRALCxx) Specifies the member name of the alias configuration member. This member
specifies alias names to the hosts.

Default: DNRALC00.

APISUBSYS (subsystem_name)

Specifies the MVS subsystem name of the API subsystem. The special name of
**** indicates that the API subsystem resides in the same address space with the
DNR task group.

Default: ****

CYCLEMAX (number) Specifies the maximum number of times to try the name server list.

Default: Three.

HOSTTABLE (DNRHSTxx)

Specifies the member name of the local host name configuration member. This
member specifies the names and Internet addresses of hosts whose names are
resolved locally (that is, without access to name servers).

Default: DNRHST00.

INTERNALTRACE | NOINTERNALTRACE

Specifies whether the Domain Name Resolver writes internal trace records to the
DNRLOG and DNRERR DD data sets.

Default: NOINTERNALTRACE

6–10 Customization Guide

Primary DNR Configuration Member (DNRCFGxx)

MAXSENDS (number) Specifies the maximum number of times that a single query to a name server is
transmitted.

Default: 10.

MAXTIME (number) Specifies the maximum number of seconds allowed to resolve any request.

Default: 90.

NAMESERVER (DNRNSCxx)

Specifies the member name of the name server configuration member. This
member is used to specify the name servers associated with various domains.

Default: DNRNSC00.

NETWORK (DNRNETxx)

Specifies the member name of the local network name configuration member.
This member specifies the names and network addresses of networks.

Default: DNRNET00.

NETWORKPREF (DNRNPCxx)

Specifies the member name of the network preference configuration member.
This member specifies the preference of networks for remote hosts that are
multihomed (that is, hosts that have multiple network attachments).

Default: DNRNPC00.

PROTOCOL (DNRPRTxx)

Specifies the member name of the local protocol name configuration member.
This member specifies the names and protocol numbers of protocols.

Default: DNRPRT00.

QUERYWAIT (number)

Specifies the number of seconds to wait before retrying a query to a name server.

Default: Two.

Domain Name Resolver (DNR) Configuration 6–11

Primary DNR Configuration Member (DNRCFGxx)

RECURSIVE | NONRECURSIVE

Specifies whether the domain name resolver requests recursive or non-recursive
requests.

DNR is directed to only use the name servers in file DNRNSCxx when
RECURSIVE is set in GLOBAL mode. You must specify the RECURSIVE
parameter on a local network utilizing firewalls in GLOBAL mode.

RECURSIVE DNR GLOBAL mode

 Implies that the servers in the name server file DNRNSCxx
are responsible for providing definitive answers back to
DNR queries.

NONRECURSIVE parameter

 Tells DNR to use other name servers (as it learns about
them) to resolve DNR queries. Running DNR in GLOBAL
mode with NONRECURSIVE parameter set generates
increasing amounts of unnecessary network activity as
DNR learns about other name servers beyond the local
firewall.

Default: NONRECURSIVE.

RPCNAMES (DNRRPCxx)

Specifies the member name of the local RPC name configuration member. This
member specifies the RPC names and RPC numbers associated with that service.

Default: DNRRPC00.

SEARCHLIST (DNRSLCxx)

Specifies the member name of the search list configuration member. This
member specifies the search strings that are appended to incomplete domain
name search strings.

Default: DNRSLC00.

SERVICES (DNRSVCxx)

Specifies the member name of the local services name configuration member.
This member specifies the service name and protocol name and port number
associated with that service.

Default: DNRSVC00.

6–12 Customization Guide

Controlling DNR Member Processing

TRACE | NOTRACE Specifies whether the domain name resolver writes trace records to the DNRLOG
and DNRERR DD data sets for each Domain Name System message DNR sends
or receives.

Default: NOTRACE

Controlling DNR Member Processing
If you do not want a secondary configuration member processed during DNR
task group initialization, specify the member name NONE in the appropriate
parameter.

If the local host configuration member should not to be processed at startup,
specify the following command:
HOSTTABLE(NONE)

Note: Specifying the member name NONE in the NAMESERVER parameter
causes all DIRSRV macro requests issued with OPTCD=GLOBAL to be
processed as if OPTCD=LOCAL was coded. See the Unicenter TCPaccess
Communications Server Assembler API Macro Reference for more information about
the DIRSRV macro.

DNRCFGxx Examples

Example 1 This example shows the usage of the DNRCFGxx member:

* SPECIFY POOL CONFIGURATION PARAMETERS

POOLDEF NAME (DSRB)
 INITIAL (16)
 MINIMUM (24)
 EXPAND (8)

* SPECIFY DNR START UP PARAMETERS

DNR APISUBSYS(****)
 NAMESERVER (NONE)
 ALIAS (DNRALC00)
 SEARCHLIST (DNRSLC00)
 NETWORKPREF (DNRNPC00)
 HOSTTABLE (DNRHST00)
 NETWORK (DNRNET00)
 PROTOCOL (DNRPRT00)
 SERVICES (DNRSVC00)
 RPCNAMES (DNRRPC00)
 CYCLEMAX (04)
 QUERYWAIT (06)
 MAXSENDS (05)
 NONRECURSIVE
 NOTRACE
 NOINTERNALTRACE

Domain Name Resolver (DNR) Configuration 6–13

Controlling DNR Member Processing

Example 2 This example shows DNRCFGxx in GLOBAL mode. Note that the suffix GL is
used to indicate use of GLOBAL mode.
===

*SPECIFY POOL CONFIGURATION PARAMETERS
===
POOLDEF NAME (DSRB)
 INITIAL (16)
 MINIMUM (24)
 EXPAND (8)
===
*SPECIFY DNR START UP PARAMETERS
*RPCNAMES (DNRRPC00)
===
DNR APISUBSYS (****)
 NAMESERVER (DNRNSCGL)
 ALIAS (DNRALCGL)
 SEARCHLIST (DNRSLCGL)
 NETWORKPREF (DNRNPCGL)
 HOSTTABLE (DNRHSTGL)
 NETWORK (DNRNETGL)
 PROTOCOL (DNRPRT00)
 SERVICES (DNRSVC00)
 CYCLEMAX (04)
 QUERYWAIT (03)
 MAXSENDS (03)
 MAXTIME (90)
 RECURSIVE
 TRACE
 INTERNALTRACE

Recommendations

It is recommended that you:

■ Always set APISUBSYS (****) so that the subsystem is always associated
with the Unicenter TCPaccess job

■ Set the parameter INTERNALTRACE on the DNR statement

You must specify the RECURSIVE parameter on a local network that uses
firewalls in GLOBAL mode. The RECURSIVE parameter directs DNR to only use
the name servers in its name server list—in file DNRNSCxx. The
NONRECURSIVE parameter directs DNR to use other name servers as it learns
about them. In a firewall environment, DNR sends out queries to other servers
that cannot be answered. Running DNR in GLOBAL mode with the
NONRECURSIVE parameter set generates increasing amounts of excessive
network activity as DNS learns about other name servers beyond the local
firewall.

If you are having problems resolving host names, turn on the TRACE parameter
on the DNR statement.

6–14 Customization Guide

Controlling DNR Member Processing

Note: All entries in member DNRCFGxx must have sequence numbers or all the
sequence numbers must be blank. Mixed sequence numbers and blanks lead to
configuration parsing errors.

This example shows DNRCFGxx in LOCAL mode. The suffix LC is used to
indicate the use of LOCAL mode.
===

* SPECIFY POOL CONFIGURATION PARAMETERS
===
POOLDEF NAME (DSRB)
 INITIAL (16)
 MINIMUM (24)
 EXPAND (8)
===
* SPECIFY DNR START UP PARAMETERS

===
DNR APISUBSYS (****)
 ALIAS (DNRALCLC)
 SEARCHLIST (DNRSLCLC)
 NAMESERVER (NONE)
 NETWORKPREF (DNRNPCLC)
 HOSTTABLE (DNRHSTLC)
 NETWORK (DNRNETLC)
 CYCLEMAX (03)
 QUERYWAIT (2)
 MAXSENDS (10)
 MAXTIME (90)
 RECURSIVE
 TRACE
 INTERNALTRACE

In local mode, all hosts are resolved from the files DNRALCxx and DNRHSTxx.

NAMESERVER(NONE) on the DNR statement indicates that there is no domain
name server in the network to resolve host names.

It is recommended that you turn on INTERNALTRACE on the DNR statement.

If you are having problems resolving host names, turn on the TRACE parameter
on the DNR statement.

Note: All entries in file DNRCFGxx must have sequence numbers or all the
sequence numbers must be blank. Mixed sequence numbers and blanks lead to
configuration parsing errors.

Domain Name Resolver (DNR) Configuration 6–15

Secondary DNR Members

Secondary DNR Members
DNR uses nine secondary configuration members that are referenced from
within the DNRCFGxx member. These members provide directory information
that enables DNR to satisfy or aid in processing application program requests. At
system startup, these members are read and customization data is stored for
processing by the DNR. If any of these members are changed, the DNR task
group must be stopped and restarted for the new changes to take effect.

The DNR configuration members are 80-character members consisting of fields
separated by spaces. Entries that require more than one line can be extended by
entering a special character sequence.

■ A dash (-) placed at the end of a line indicates the next field continues on the
next line

■ A plus sign (+) placed at the end of a line indicates the field continues on the
next line

The address:
OUR.COM. A.OUR.COM. 26.26.26.26

can be entered as:
OUR.COM

A.OUR.COM. 26.26.26.26
OUR.COM. A.OUR. +
COM. 26.26.26.26

6–16 Customization Guide

Mapping Host Names (DNRHSTxx)

Mapping Host Names (DNRHSTxx)
The DNRHSTxx member in the PARM data set implements a static host table. It
is referenced by the HOSTTABLE parameter of the DNR statement in
DNRCFGxx. This member satisfies Unicenter TCPaccess and its API requests to
resolve fully qualified domain names to Internet addresses. Use DNRHSTxx for
LOCAL requests and as a backup for GLOBAL requests. Configure DNRHSTxx
with the fully qualified names and Internet addresses of hosts at your site.

Note: It is recommended that the LOCAL host be defined first in this member.

The format of the DNRHSTxx member shows the host domain name followed by
the host address in dotted decimal format:
CETI.OUR.COM. 129.192.192.235
IBM.OUR.COM. 129.192.192.111
IBM.OUR.COM. 129.192.192.112

Host names must end with a period (.) for proper name resolution. Host names
are used in local mode.

Host Name Syntax
hostname hostaddress comment

hostname Specifies the fully qualified host name.

Default: None—required field.

hostaddress Specifies the Internet address in dotted decimal notation assigned to the host
name referenced as hostname.

Default: None—required field.

comment Specifies an optional comment.

Default: None.

Domain Name Resolver (DNR) Configuration 6–17

Mapping Host Names (DNRHSTxx)

DNRHSTxx Example

This example shows the usage of the host name:
LOOPBACK.OUR.COM. 127.0.0.1 TCP/IP LOOPBACK ADDRESS
A.OUR.COM. 192.16.73.1
A.OUR.COM. 192.16.73.2
LOCALHOST. 127.0.0.1
NIC.DDN.MIL. 192.67.67.20
A.OUR.COM. 192.16.73.1
B.OUR.COM. 192.16.73.2

Configuring the DNRHSTxx member enables the DNR to satisfy all LOCAL host
name to Internet address requests given the fully qualified domain name listed
in the host domain name field of the DNRHSTxx member.

This file must contain, at a minimum:

■ The local host name and address

■ The local loopback name and address (for example, LOOPBACK 127.0.0.1)

If you have DNR configured in GLOBAL mode, this member must also contain
the fully qualified names of the Domain Name Servers in the network.

If a site's DNRHSTxx configuration member includes the items listed in the
previous distributed DNRHST00 member list, and a Unicenter TCPaccess user
attempts to establish an FTP session with B.OUR.COM and Unicenter TCPaccess
is configured in LOCAL mode, DNR returns 192.16.73.2 as the address to
Unicenter TCPaccess, enabling the connection to be established.

Alternatively, you can specify partially qualified names instead of fully qualified
names.

You can establish an FTP session to B.OUR.COM. by specifying a partially
qualified host name, such as B.

In order to specify a host name other than the fully qualified name given in the
host domain name field of the DNRHSTxx member, the DNRALCxx member
and/or the DNRSLCxx member must be configured. DNRALCxx or DNRSLCxx
members must be configured regardless of GLOBAL or LOCAL requests.

6–18 Customization Guide

Mapping Host Names (DNRHSTxx)

GLOBAL Example

This example shows DNRHSTxx in GLOBAL mode:
MVS.SITE1.COM. 138.22.140.117
MVS. 138.22.140.117
ACSS. 138.22.140.117
SUN2.SITE1.COM. 138.22.140.44
SUN2. 138.22.140.44
LOOPBACK.SITE1.COM. 127.0.0.1
LOOPBACK. 127.0.0.1

For each host, place two mappings into the file:

■ The fully qualified host name ending with a period that maps to an IP
address

■ The host name ending with a period that maps to an IP address

Map the subsystem name ending with a period map to an IP address.

The only hosts needed in global are the MVS Unicenter TCPaccess host,
loopback, and the domain name server host.

Note: All entries in file DNRHSTxx must have sequence numbers or all the
sequence numbers must be blank. Mixed sequence numbers and blanks lead to
configuration parsing errors.

LOCAL Example

This example shows DNRHSTxx in LOCAL mode:
MVS.SITE1.COM. 138.22.140.117
MVS. 138.22.140.117
ACSS. 138.22.140.117
MVS1.SITE1.COM. 138.22.140.13
MVS1. 138.22.140.13
MVS3.SITE1.COM. 138.22.140.136
MVS3. 138.22.140.136
SUN2.SITE1.COM. 138.22.140.165
SUN2. 138.22.140.165
SUN1.SITE1.COM. 138.22.140.165
SUN1. 138.22.140.165
OLDSUN.SITE1.COM. 138.22.140.160
OLDSUN. 138.22.140.160
SUNHQ.SITE1.COM. 138.22.140.128
SUNHQ. 138.22.140.128
LOOPBACK.SITE1.COM. 127.0.0.1
LOOPBACK. 127.0.0.1

Domain Name Resolver (DNR) Configuration 6–19

Host Name Aliases (DNRALCxx)

For each host, place two mappings into the file:

■ The fully qualified host name ending with a period that maps to an IP
address

■ The host name ending with a period that maps to an IP address

Map the subsystem name ending with a period to an IP address.

Note:
■ All hosts to be resolved by a name must be in files DNRALCxx and

DNRHSTxx.

■ You can still get to a host by using an IP address that is not in files
DNRALCxx and DNRHSTxx.

■ All entries in file DNRHSTxx must have sequence numbers or all the
sequence numbers must be blank. Mixed sequence numbers and blanks lead
to configuration parsing errors.

Host Name Aliases (DNRALCxx)
The DNRALCxx member in the PARM data set creates fully qualified domain
names from partially qualified domain names. It is referenced by the ALIAS
parameter of the DNR statement in DNRCFGxx.

This member must be configured with the fully qualified domain name of the
Unicenter TCPaccess subsystem name. This member must also be configured in
conjunction with the DNRSLCxx member to enable Unicenter TCPaccess users to
specify partially qualified domain names (not ending in a period) as arguments
to DNR requests that require a fully qualified domain name as a search
argument. Configure DNRALCxx with site-specific information.

6–20 Customization Guide

Host Name Aliases (DNRALCxx)

DNRALCxx Format

The member format of the DNRALCxx member is shown below.

Search String Replacement String Comments

ACSS MVS.OUR.COM. PUT IN OUR TCP/IP SUBSYSTEM
NAME.

IP01 138.22.140.117 Map SYS1.PARMLIB(IEASYSxx)
system name to IP address for HPNS
and IUCV DNR services

MVS MVS.OUR.COM. PUT IN OUR TCP/IP ALIAS.

NEPTUNE NEPTUNE.OUR.COM
.

ALIASES TO AVOID SEARCH LISTS.

CETI CETI.OUR.COM. ALIASES TO AVOID SEARCH LISTS.

ALPHA A.OUR.COM. 3.0 ALPHA SITE.

B.ASU.EDU. 26.1.2.3 DOES NOT PARTICIPATE IN DNS.

The format of the DNRALC00 member distributed with Unicenter TCPaccess is
shown below

Search String Replacement String Comments

ACSS A.OUR.COM. OUR TCP/IP SUBSYSTEM NAME.

MVS A.OUR.COM. AN ALIAS FOR OUR LOCAL HOST.

LOOPBACK 127.0.0.1 TCP/IP LOCAL HOST NAME.

LOCALHOST

127.0.0.1

TCP/IP LOCAL
HOST NAME.

A A.OUR.COM. ALIAS TO AVOID SEARCH LISTS.

B 1.1.1.1 DOES NOT PARTICIPATE IN DNS.

Specify at least one alias entry for each copy of Unicenter TCPaccess running at
your site. The entry must have the Unicenter TCPaccess Subsystem Name
mapped to the fully qualified host name (that is, ACSS A.OUR.COM).

The alias configuration member, DNRALCxx, works very closely with the search
list configuration member (DNRSLCxx).

Note: It is recommended that the LOCAL host be defined first in this member.

Domain Name Resolver (DNR) Configuration 6–21

Host Name Aliases (DNRALCxx)

You must specify an alias entry that maps the Unicenter TCPaccess subsystem ID
to the host name; the replacement string must end in a period. Failure to do so
causes certain tasks to terminate (that is, USMTP) and causes the SNM task
group to fail.

Search String Syntax
search_string replacement_string comment

search_string Specifies an alias.

Default: None.

replacement_string Specifies a string used as a substitute string for the alias referenced as
search_string.

 Default: None.

comment Specifies an optional comment.

Default: None.

Host Aliases Examples

In these examples:

■ All hosts are resolved from files DNRALCxx and DNRHSTxx.

■ Subsystem ACSS maps out to fully qualified hostname ending with a period.

■ MVS hostname maps out to fully qualified MVS hostname ending with a
period.

■ Our domain name server host hobbes maps out to its full hostname ending
with a period.

■ Map loopback (127.0.0.1) to an IP address (in DNRALCxx file).

• Map your SYS1.PARMLIB(IEASYSxx) system name to IP address for
HPNS and IUCV DNR services.

■ Notice the shorthand alias on the left does not end with a period, while all
the fully qualified names on the right end with a period.

■ All entries in file DNRALCxx must have sequence numbers or all the
sequence numbers must be blank. Mixed sequence numbers and blanks lead
to configuration parsing errors.

6–22 Customization Guide

Host Name Aliases (DNRALCxx)

This example shows the usage of the host aliases:
ACSS A.OUR.COM. TCP/IP SUBSYSTEM NAME

MVS A.OUR.COM. AN ALIAS FOR OUR LOCAL HOST
LOOPBACK LOOPBACK.OUR.COM. TCP/IP LOOPBACK
A A.OUR.COM. ALIAS TO AVOID SEARCHLIST

This entry in the DNRALCxx configuration member lets users connect to
A.OUR.COM by ACSS:
ACSS A.OUR.COM.

GLOBAL Mode
Example

This example shows DNRALCxx configured in GLOBAL mode:

ACSS MVS. SITE1.COM.
MVS MVS.SITE1.COM.
HOBBES HOBBES.SITE1.COM.
LOOPBACK 127.0.0.1
LOCALHOST 127.0.0.1
IP01 138.22.140.117

LOCAL Mode
Example

This example shows DNRALCxx in LOCAL mode:

ACSS MVS.SITE1.COM.
MVS MVS.SITE1.COM.
MVSHQ MVSHQ.SITE1.COM.
SUN1 SUN1.SITE1.COM.
SUN2 SUN2.SITE1.COM.
LOOPBACK 127.0.0.1 TCP/IP LOCAL HOST NAME
LOCALHOST 127.0.0.1 TCP/IP LOCAL HOST NAME
IP01 138.22.140.117

Domain Name Resolver (DNR) Configuration 6–23

Search Lists (DNRSLCxx)

Search Lists (DNRSLCxx)
Use the DNRSLCxx member to specify the search list for the DNR component of
Unicenter TCPaccess. This member name is referenced as the argument in the
SEARCHLIST operand of the DNR statement in the DNRCFGxx member.

The DNRSLCxx member in the PARM data set creates fully qualified domain
names from partially qualified domain names. Configure this member in
conjunction with the DNRALCxx member to enable Unicenter TCPaccess users
to specify partially qualified domain names (not ending in a period) as
arguments to DNR requests that require a fully qualified domain name as a
search argument. Configure DNRSLCxx with site-specific information.

The domain field must end in a period (.).

Search List Syntax
domain_name comment

domain_name Specifies a fully qualified domain name. This parameter specifies search strings
that are appended to incomplete domain name search strings to create fully
qualified names.

Default: None.

comment Specifies an optional comment.

Default: None

6–24 Customization Guide

Search Lists (DNRSLCxx)

DNRSLCxx Usage

This table shows the format of the DNRSLCxx member:

Fully-Qualified Domain String Comments

. Try root first,

OUR.COM. ...then OUR.COM,

ISI.EDU. ...then try this.

The format of the default DNRSLC00 member distributed with Unicenter
TCPaccess is shown here:
OUR.COM. <=== Place your domain here.

. Put root level next.

On receipt of a partially qualified name, the DNR must be able to search the
directory and create a fully qualified domain name whether the request is
LOCAL or GLOBAL. The DNRSLCxx member information is used with the
Unicenter TCPaccess subsystem name configured in the DNRALCxx member to
build a search list.

If the DNRSLCxx at your site contains this entry:
THEIR.COM.

MY.EDU.

and your DNRALCxx contains this entry
ACSS A.OUR.COM

DNR creates this search list
THEIR.COM.
MY.EDU.
OUR.COM.
.

Domain Name Resolver (DNR) Configuration 6–25

Search Lists (DNRSLCxx)

On receipt of a partial domain name, DNR concatenates the partial name with
each item in the search list and searches the directory for the qualified names. It
performs a check for string uniqueness, making it possible to reorder the local
host domain search by adding a level to the search list.

If the site DNRSLCxx contains this entry:
OUR.COM.

.
THEIR.COM.
MY.EDU.

and your DNRALCxx contains this entry:
ACSSA.OUR.COM

DNR creates this search list
OUR.COM.
.
THEIR.COM.
MY.EDU.
COM.

List the local domain followed by the root domain (“.”) first in the site
DNRSLCxx.

Note: All entries in file DNRSLCxx must have sequence numbers or all the
sequence numbers must be blank. Mixed sequence numbers and blanks lead to
configuration parsing errors.

Search List Examples

Here is an example of DNRSLCxx. The configuration for both GLOBAL and
LOCAL is the same:
SITE1.COM.
COM.
. ROOT

The first line contains your local domain name SITE1.COM. ending with a
period.

The second line contains the last qualifier of your domain name COM. ending
with a period.

The third line contains the last qualifier, which is simply a period "."

6–26 Customization Guide

Coordinating DNRALCxx and DNRSLCxx Configuration

Coordinating DNRALCxx and DNRSLCxx Configuration
The purpose of DNRALCxx and DNRSLCxx configuration files is to enable
Unicenter TCPaccess users to specify partially qualified domain names as
arguments to DNR requests that require a fully qualified domain name as a
search argument. Without the DNRALCxx and DNRSLCxx configuration files,
Unicenter TCPaccess itself and its users would be required to specify fully
qualified domain names as arguments to DNR requests that require fully
qualified domain names. Configuration of these files, however, enables DNR
users to request information giving partially qualified names.

When the DNR receives a partially qualified name, it must be able to search the
directory and create a fully qualified domain name whether the request is
LOCAL or GLOBAL. A minimum configuration maps your Unicenter TCPaccess
subsystem name to the Unicenter TCPaccess legal fully qualified host name in
the DNRALCxx member. This enables your site to resolve all names within your
domain by giving the host name as a partially qualified name.

If your DNRALCxx configuration member contains the entry:
ACSS A.OUR.COM.

and your DNRSLCxx configuration contains this entry
OUR.COM.
COM.
.

Unicenter TCPaccess users are able to connect to A.OUR.COM. by specifying
either A, A.OUR, or A.OUR.COM partially qualified names.

The DNR is able to resolve all names within the local domain (OUR.COM. in the
previous example) if the DNRALCxx member includes the proper subsystem
name configuration.

To connect to domains other than the local domain without having to specify a
fully qualified name, configure DNRSLCxx with the remote domain.

To enable Telnet users to connect to C.THEIR.COM. by specifying C, configure
DNRSLCxx with this entry:
THEIR.COM.

Alternatively, a site can list the specific alias in the DNRALCxx member this
way:
C C.THEIR.COM.

Domain Name Resolver (DNR) Configuration 6–27

Coordinating DNRALCxx and DNRSLCxx Configuration

However, the entry in DNRALCxx in this example lets DNR resolve C to
C.THEIR.COM. only. Entering THEIR.COM in the search list lets Unicenter
TCPaccess users resolve all names within the THEIR.COM. domain specifying
the host label only.

DNR Alias and Search List Recommendations

Here are some recommendations for configuring the DNRALCxx and
DNRSLCxx members:

■ The DNRALCxx member is consulted before the DNRSLCxx member. If the
search string is found, the replacement string is used for further processing.
Therefore, if the replacement string is not a fully qualified name, the
replacement string is concatenated with the search list strings configured in
DNRSLCxx to form fully qualified names.

■ The DNRALCxx member search is not recursive.

 If DNRALCxx is configured with these entries:
A MVS
MVS A.OUR.COM.

 A request for A resolves to MVS only. If an application program wants a
recursive search, it must be included in the application program. Likewise,
the search returns only one replacement string; therefore, the search string
must be unique. However, several search strings can have the same
replacement string.

■ For performance reasons, configure frequently accessed host names in the
DNRALCxx member giving their fully qualified name as the replacement
string. This decreases the number of table lookups (LOCAL) or DNS requests
(GLOBAL) sent per DNR request.

■ If the dotted decimal representation of an Internet address is given as the
replacement string in DNRALCxx, DNR returns the binary representation of
this string in a name to address resolution request. This feature enables joint
communication with hosts participating in the domain name system and
hosts not participating in the domain system.

6–28 Customization Guide

Name Servers (DNRNSCxx)

Name Servers (DNRNSCxx)
Use the DNRNSCxx member to specify the name servers assigned various
domains for the DNR component of Unicenter TCPaccess This member name is
referenced as the argument in the NAMESERVER operand of the DNR statement
in the DNRCFGxx member.

This member must contain site-specific information if Unicenter TCPaccess is
configured in GLOBAL mode or if any API application programs issue GLOBAL
requests. If running in LOCAL mode, specify NAMESERVER(NONE) in
DNRCFGxx to ensure usage of LOCAL tables.

Note: The domain and nameserver fields must end in a period (.).

Name Server Syntax
domain nameserver nsiaddr comment

domain Specifies a fully qualified domain.

Default: None—required field.

nameserver Specifies a fully qualified name of the name server authoritative for the domain
referenced by domain.

Default: None—required field.

nsiaddr Specifies the Internet address in decimal dot notation of the name server
referenced by nameserver.

 Default: None—required field.

comment Specifies an optional comment.

 Default: None.

Domain Name Resolver (DNR) Configuration 6–29

Name Servers (DNRNSCxx)

DNRNSCxx Operation

This table shows the format of the DNRNSCxx member:

Zone Name Server Name Server
Address

Comments

INC.COM. A.INC.COM 192.16.73.1 Our authoritative first.

INC.COM. B.INC.COM 192.16.73.2 Our authoritative first.

. NIC.DDN.MIL 126.0.0.73 1st root name server.

. A.ISI.EDU 26.3.0.13 2nd root name server.

The following is the format of the DNRNSC00 member distributed with
Unicenter TCPaccess.

OUR.COM. SERVERA.OUR.COM 192.16.43.4 <== Set server for your
domain

OUR.COM. SERVERB.OUR.COM 192.16.73.3 <== Set server for your
domain

. NS.NIC.DDN.MIL 192.67.67.53 Root name server

. A.ISI.EDU 26.3.0.103 Root name server

. NS.NASA.GOV 28.102.16.10 Root name server

This is an example of DNRNSCxx configured for GLOBAL mode:
IN-ADDR.ARPA. SUNSERVER.SITE1.COM. 138.22.140.44
SITE1.COM. SUNSERVER.SITE1.COM. 138.22.140.44
. NS.NIC.DDN.MIL. 192.67.67.53

138.22.140.44 is the local network domain resolver host.

The first line must contain IN-ADDR.ARPA. going to your local domain network
server host (ending with a period) followed by its IP address.

The second line must contain an installation's domain name (colmbia.com.)
(ending with a period) going to your local domain network server host (ending
with a period) followed by its IP address.

192.67.67.53 is the DDN network domain resolver host.

The third line goes out to the NIC to resolve remote hosts.

6–30 Customization Guide

Name Servers (DNRNSCxx)

If an installation has no internet connection, or if there is a firewall that prevents
DNR query responses from returning, then the third line would look like (except
the period would start in column 1.):
. SUNSERVER.SITE1.COM. 138.22.140.44

Note: All entries in file DNRNSCxx must have sequence numbers or all the
sequence numbers must be blank. Mixed sequence numbers and blanks lead to
configuration parsing errors.

On receipt of an application program request, the DNR builds a list of name
servers to query for each outgoing request. This list is built by choosing the
closest name servers for a particular domain name. The closest name server is
determined by matching the domain of the search string provided in the
application program request and the domains indicated in this member. This list
is then sorted according to the networks specified in the DNRNPCxx
configuration member described here. If running in LOCAL mode, specify
NAMESERVER(NONE) in DNRCFGxx to ensure the use of local tables; this is
the default as shipped in DNRCFGxx.

When queries are sent to name servers, a name server may return an address of a
name server that is closer to the requested domain. These name server delegation
records are added to the cache maintained by the DNR and are used for
subsequent queries. Therefore, the DNRNSCxx member contains a list of name
servers to be used on initial queries so long as delegations are not received.

If this member is empty, all GLOBAL requests are processed as if they were
requested with the LOCAL option.

For reliability reasons, include the name servers for the local host's domain and
two root name servers in this member. Also, the local host's domain name server
should be attached to the local subnetwork.

To use a local name server, rather than a networked name server, to resolve
addresses, specify the local name server in the DNRNSCxx member. (This can be
particularly important for networks protected by a firewall, in which case name
server queries may not be able to be returned to your local DNR server). It is also
recommended that you use reverse address lookup (IN-ADDR.ARPA).

DNRNSCxx Member Format:
IN-ADDR.ARPA. SERVERA.OUR.COM. 192.16.43.4
OUR.COM. SERVERA.OUR.COM. 192.16.43.4
IN-ADDR.ARPA. SERVERB.OUR.COM. 192.16.73.3
OUR.COM. SERVERB.OUR.COM. 192.16.73.3

Domain Name Resolver (DNR) Configuration 6–31

Setting Network Preferences (DNRNPCxx)

Name Servers Example

This example shows the usage of the name servers:
. NIC.DDN.MIL. 26.0.0.73 ROOT NAME SERVER
. NIC.DDN.MIL. 10.0.0.51 ROOT NAME SERVER
. A.ISI.EDU. 26.3.0.13 ROOT NAME SERVER

Setting Network Preferences (DNRNPCxx)
The DNRNPCxx member in the PARM data set is used to order the preferred
routes of networks. It is referenced by the NETWORKPREF parameter of the
DNR statement in DNRCFGxx. This member, used by the DNR, affects the query
order of name servers. The list is also used to order returned address lists when a
remote host is multihomed. This member must contain site-specific information
if Unicenter TCPaccess is configured in GLOBAL mode or if any Unicenter
TCPaccess application programs issue GLOBAL requests.

Network Preferences Syntax
network comment

network Specifies a network address in dotted decimal notation.

 Default: None.

comment Specifies an optional comment.

 Default: None.

6–32 Customization Guide

Setting Network Preferences (DNRNPCxx)

DNRNPCxx Configuration

This table shows the member format of the DNRNPCxx member:

Network Number Comments

129.192.192 lan

129.192.128 pdn

26 last

The DNRNPC00 member distributed with Unicenter TCPaccess is shown below.
The configuration is the same for both GLOBAL and LOCAL mode:
192.16.73 PUT THE LOCAL NETWORK FIRST,
192.67.67 ... THEN NIC.DDN.MIL NETWORK,
26 ... THEN MILNET,
10 ... THEN ARPANET.

The NICDDN, ARPANET, and MILNET entries (lines 2-4) can be placed in file
DNRNETxx to resolve other hosts on the Internet.

Note:
■ If your installation cannot connect to the Internet, do not place these lines

(two-four) in this file.

■ If your installation has a firewall that does not allow DNR query responses
back into the installation, do not place these lines (two-four) in this file.

■ All entries in file DNRNETxx must have sequence numbers or all the
sequence numbers must be blank. Mixed sequence numbers and blanks lead
to configuration parsing errors.

Network Preference Example

This example shows the usage of the network preference:
192.16.73 PUT OUR LOCAL NETWORK FIRST
26 THEN MILNET

Domain Name Resolver (DNR) Configuration 6–33

Setting Network Name to Network Number Mapping (DNRNETxx)

Setting Network Name to Network Number Mapping
(DNRNETxx)

The DNRNETxx member in the PARM data set specifies network name to
network number mappings and vice versa. It is referenced by the NETWORK
parameter of the DNR statement in DNRCFGxx. Configuration of this member is
required only for sites that run Unicenter TCPaccess application programs that
issue DIRSRV GET NETWORK requests.

Network Syntax
networkname networkaddress comment

networkname Specifies a network name.

Default: None—required field.

networkaddress Specifies the network address in dotted decimal notation assigned to the network
name referenced as networkname.

 Default: None—required field.

comment Specifies an optional comment.

Default: None

This table shows the member format of the DNRNETxx member:

Network Name Network Number In Dotted Decimal Format

MILNET 26

ISI-NET 128.9

The DNRNET00 member distributed with Unicenter TCPaccess is shown below:
ARPANET 10
MILNET 26
LOCALNET 192.16.73 LOCAL HOST NETWORK.

Here is an example of DNRNETxx configured for either LOCAL or GLOBAL
mode:
ETHERNET2 138.22.140 LOCAL HOST NETWORK
NICDDN 192.67 OPTIONAL LINE WHEN CONNECTED TO THE INTERNET
ARPANET 10 OPTIONAL LINE WHEN CONNECTED TO THE INTERNET
MILNET 26 OPTIONAL LINE WHEN CONNECTED TO THE INTERNET

138.22.140 is our local network.

6–34 Customization Guide

Setting Network Name to Network Number Mapping (DNRNETxx)

The NICDDN, ARPANET, and MILNET entries (lines two-four) can be placed in
file DNRNETxx to resolve other hosts on the Internet.

Note:
■ If your installation cannot connect to the Internet, do not place these lines

(two-four) in this file.

■ If your installation has a firewall that will not allow DNR query responses
back into the installation, do not place these lines (two-four) in this file.

■ All entries in file DNRNETxx must have sequence numbers or all the
sequence numbers must be blank. Mixed sequence numbers and blanks lead
to configuration parsing errors.

Network Names Examples

This example shows the usage of the network names:
ARPANET 10
MILNET 26
LOCALNET 192.16.73 LOCAL HOST'S NETWORK

Domain Name Resolver (DNR) Configuration 6–35

Setting Protocol Name to Address Mappings (DNRPRTxx)

Setting Protocol Name to Address Mappings (DNRPRTxx)
The DNRPRTxx member of the PARM data set specifies protocol name to
address mappings and vice versa. It is referenced by the PROTOCOL parameter
of the DNR statement in DNRCFGxx.

Note: Configuration of this member is required only for sites that run Unicenter
TCPaccess application programs that issue DIRSRV GET PROTOCOL requests.

Protocol Name Syntax
protocolname protocolnumber comment

protocolname Specifies a protocol name.

Default: None—required field.

protocolnumber Specifies the protocol number assigned to the protocol name referenced as
protocolname.

Default: None—required field.

comment Specifies an optional comment.

Default: None.

This table shows the member format of the DNRPRTxx member:

Protocol Name Protocol Number Comments

TCP 6 TRANSMISSION CONTROL.

UDP 17 USER DATAGRAM.

This table shows the DNRPRT00 member distributed with Unicenter TCPaccess:
ICMP 1 # INTERNET CONTROL MESSAGE PROTOCOL.
GGP 3 # GATEWAY-GATEWAY PROTOCOL.
TCP 6 # TRANSMISSION CONTROL PROTOCOL.
EGP 8 # EXTERIOR GATEWAY PROTOCOL.
PUP 12 # PARC UNIVERSAL PACKET PROTOCOL.
UDP 17 # USER DATAGRAM PROTOCOL.
HMP 20 # HOST MONITORING PROTOCOL.
XNS-IDP 22 # XEROX NS IDP.
RDP 27 # “RELIABLE DATAGRAM” PROTOCOL.

6–36 Customization Guide

Setting Protocol Name/Service Pairs to Port Numbers (DNRSVCxx)

Protocol Names Example

This example shows the usage of the protocol names:
TCP 6 TRANSMISSION CONTROL PROTOCOL

UDP 17 USER DATAGRAM PROTOCOL

Setting Protocol Name/Service Pairs to Port Numbers
(DNRSVCxx)

The DNRSVCxx member in the PARM data set is used to specify the mappings
from protocol name/service name pairs to port numbers and vice versa. It is
referenced by the SERVICES parameter of the DNR statement in DNRCFGxx.

Note: Configuration of this member is required only for sites that run Unicenter
TCPaccess application programs that issue DIRSRV GET SERVICE requests. This
is a static table.

Protocol Name/Service Pair Syntax
protocol service portnumber comment

protocol Specifies a protocol name.

Default: None—required field.

service Specifies the service name.

Default: None—required field.

portnumber Specifies the port number associated with the PROTOCOL and SERVICE
parameters referenced in protocol and service.

Default: None—required field.

comment Specifies an optional comment.

Default: None

Domain Name Resolver (DNR) Configuration 6–37

Setting Protocol Name/Service Pairs to Port Numbers (DNRSVCxx)

DNRSVCxx Configuration

This table shows the format of the DNRSVCxx member:

Protocol Name Service
Name

Port
Number

Comment

TCP FTP 21 FILE TRANSFER PROTOCOL.

TCP SMTP 25 SIMPLE MAIL TRANSFER

UDP SMTP 25 SIMPLE MAIL TRANSFER

The DNRSVC00 member distributed with Unicenter TCPaccess is shown below:
TCP ECHO 7
TCP DISCARD 9 SINK NULL
TCP SYSTAT 11 USERS
TCP DAYTIME 13
TCP NETSTAT 15
TCP QOTD 17 QUOTE
TCP CHARGEN 19 TTYTST SOURCE
TCP FTP 21
TCP TELNET 23
TCP SMTP 25 MAIL
TCP TIME 37 TIMSERVER
TCP NAMESERVER 42 NAME # len 116
TCP WHOIS 43 NICNAME
TCP DOMAIN 53 NAMESERVER # Domain Name Server
TCP MTP 57 # Deprecated
TCP RJE 77 NETRJS
TCP FINGER 79
TCP LINK 87 TTYLINK
TCP SUPDUP 95
TCP HOSTNAMES 101 HOSTNAME # Usually from
TCP POP 109 POSTOFFICE
TCP SUNRPC 111
TCP AUTH 113 AUTHENTICATION
TCP SFTP 115
TCP UUCP-PATH 117
TCP NNTP 119 READNEWS UNTP # Usenet news transfer
TCP EXEC 512
TCP LOGIN 513
TCP SHELL 514 CMD # No passwords
TCP PRINTER 515 SPOOLER # Line printer
TCP EFS 520 # For LucasFilm
TCP TEMPO 526 NEWDATE
TCP COURIER 530 RPC
TCP CONFERENCE 531 CHAT
TCP NETNEWS 532 READNEWS
TCP UUCP 540 UUCPD # UUCP Daemon
TCP REMOTEFS 556 RFS_SERVER RFS # Brunhoff remote filesy
TCP UUCP 540 UUCPD # UUCP Daemon
TCP REMOTEFS 556 RFS_SERVER RFS # Brunhoff remote filesy
TCP VMTELNET 1023
UDP ECHO 7
UDP DISCARD 9 SINK NULL
UDP DAYTIME 13
UDP CHARGEN 19 TTYTST SOURCE
UDP TIME 37 TIMSERVER
UDP RLP 39 RESOURCE # Resource locator
UDP DOMAIN 53 NAMESERVER

6–38 Customization Guide

Setting RPC Name-to-Program Mappings (DNRRPCxx)

UDP TFTP 69
UDP SUNRPC 111
UDP SNMP 161 # SNMPD
UDP BIFF 512 COMSAT
UDP WHO 513 WHOD
UDP SYSLOG 514
UDP TALK 517
UDP NTALK 518
UDP ROUTE 520 ROUTER ROUTED # RIP
UDP TIMED 525 TIMESERVER
UDP NETWALL 533 # Emergency Broadcast

Service Names Example

This example shows the usage of the service names:
TCP FTP 21 FILE TRANSFER PROTOCOL
TCP SMTP 25
UDP RPC 111

Setting RPC Name-to-Program Mappings (DNRRPCxx)
The DNRRPCxx member in the PARM data set is used to specify RPC name to
RPC program number mappings and vice versa. It is referenced by the
RPCNAMES parameter of the DNR statement in DNRCFGxx.

Note: The file also includes RPC alias to RPC official name mappings.
Configuration of this member is required only for sites that run Unicenter
TCPaccess application programs that issue DIRSRV GET RPC requests such as
NFS. This is a static table.

RPC Name-to-Program Mappings Syntax
RPC_name RPC_number RPC_alias comment

RPC_name Specifies an RPC name.

Default: None—required field.

RPC_number Specifies the RPC number.

Default: None—required field.

RPC_alias Specifies a maximum of five aliases for the RPC name.

Default: None.

Domain Name Resolver (DNR) Configuration 6–39

Setting RPC Name-to-Program Mappings (DNRRPCxx)

comment Specifies an optional comment.

Default: None.

This table shows the member format of the DNRRPCxx member. An RPC name
can have a maximum of five aliases:

RPC Name RPC
Number

RPC Aliases Comments

PORTMAPPER 100000 PORTMAP SUNRPC

RSTATD 100001 RSTAT RSTAT_SVC RUP PERFMETER

RUSERSD 100002 RUSERS

NFS 100003 NFSPROG

The DNRRPC00 member distributed with Unicenter TCPaccess is shown below.

Note: Multiple aliases can be specified; the last value is always interpreted as a
comment.
PORTMAPPER 100000 PORTMAP SUNRPC
RSTATD 100001 RSTAT RSTAT_SVC RUP PERFMETER
RUSERSD 100002 RUSERS
NFS 100003 NFSPROG
YPSERV 100004 YPPROG
MOUNTD 100005 MOUNT SHOWMOUNT
YPBIND 100007
WALLD 100008 RWALL SHUTDOWN
YPPASSWDD 100009 YPPASSWD
ETHERSTATD 100010 ETHERSTAT
RQUOTAD 100011 RQUOTAPROG QUOTA RQUOTA
SPRAYD 100012 SPRAY
3270_MAPPER 100013
RJE_MAPPER 100014
SELECTION_SVC 100015 SELNSVC
DATABASE_SVC 100016
REXD 100017 REX
ALIS 100018
SCHED 100019
LLOCKMGR 100020
NLOCKMGR 100021
X25.INR 100022
STATMON 100023
STATUS 100024
BOOTPARAM 100026
YPUPDATED 100028 YPUPDATE
KEYSERV 100029 KEYSERVER
TFSD 100037
NSED 100038
NSEMNTD 100039
MVSMOUNT 100044
SHOWATTR 100059
PCNFSD 150001

6–40 Customization Guide

DNR Customization Examples

RPC Name Example

This example shows the usage of the RPC name:
PORTMAPPER 100000 PORTMAP SUNRPC
RSTATD 100001 RSTAT RSTAT_SVC RUP PERFMETER
RUSERSD 100002 RUSERS
NFS 100003 NFSPROG
YPSERV 100004 YPPROG
MOUNTD 100005 MOUNT SHOWMOUNT
YPBIND 100007
WALLD 100008 RWALL SHUTDOWN
YPPASSWDD 100009 YPPASSWD

DNR Customization Examples
This section provides examples of DNR configurations. These examples
demonstrate how the DNR task group can be customized to meet the specific
needs of your installation.

DNR with Only Configuration Data

This section uses an example company named XYZ, Inc., that has a single
Ethernet. Connected to the Ethernet is an MVS system running Unicenter
TCPaccess and several workstations. The Ethernet is not connected to another
network. Therefore, the network administrator randomly chose an internet
network number of 1.0.0.0. The GLOBAL statement DNR operand in APPCFGxx
must specify LOCAL for this configuration.

New PARM member
DNRHST01:

The network administrator assigns the MVS system the internet address of
1.0.0.1. Each workstation is assigned the next available host number (i.e. 1.0.0.2,
1.0.0.3, ...). Lastly, the MVS system is given the host name MVS and the
workstations are assigned the names of their users.

A new host configuration member, DNRHST01, is created listing the host names
and internet addresses of the MVS system and workstations. Note that each host
name ends with a period:
LOOPBACK. 127.0.0.1 Required Entry
MVS. 1.0.0.1 TCP/IP HOST
BILL. 1.0.0.2
JOE. 1.0.0.3
ROBERT. 1.0.0.5
KIRK. 1.0.0.6
MARY. 1.0.0.7
SAM. 1.0.0.8
FRANK. 1.0.0.9
DEBBIE. 1.0.0.10
NAT. 1.0.0.11
BARB. 1.0.0.12
ALICE. 1.0.0.13
CHARLIE. 1.0.0.14

Domain Name Resolver (DNR) Configuration 6–41

DNR Customization Examples

New PARM member
DNRALC01

One of the workstation users, Robert, is known by both his formal name and by
the nickname Bob. A new alias configuration member, DNRALC01, is created
to assign an alias for Robert. In addition to the alias for Bob, there is a required
alias entry to map the Unicenter TCPaccess subsystem name to the Unicenter
TCPaccess host name. An entry to map ACSS to MVS is included in
DNRALC01. An entry to map the MVS system name defined in
SYS1.PARMIB(IEASYSxx) to the local IP address is on the last line.
ACSS MVS. TCP/IP SUBSYSTEM NAME

BOB ROBERT. ALIAS BOB FOR HOST NAME ROBERT

IP01 1.0.0.1

New TCPPARM
member DNRSLC01

A new search list member, DNRSLC01, is created. Without this member, users
must enter the fully qualified host names are listed in the DNRHST01 member.
A single entry, a period (.), is included to enable users to specify host names as
partially qualified names (not including the trailing period). Therefore, if the
host name MARY is entered, the period is appended to the end forming the
host name MARY. which is in the DNRHST01 member.
.ADD PERIOD IF OMITTED

New PARM member
DNRCFG01

To ensure that all requests are processed in LOCAL mode the NAMESERVER
parameter of the DNR statement is updated to specify NONE.

The primary configuration member must be modified to include the new
secondary configuration members. A new DNRCFG01 member is created using
DNRCFG00 as a model. DNRCFG01 includes the new secondary members. Note
that only the NAMESERVER, ALIAS, SEARCHLIST and HOSTTABLE keywords
are modified.
===

*SPECIFY POOL CONFIGURATION PARAMETERS
===
POOLDEF NAME (DSRB)
 INITIAL (16)
 MINIMUM (24)
 EXPAND (8)
===
*SPECIFY DNR START UP PARAMETERS
===
DNR APISUBSYS (****)
 NAMESERVER (NONE)
 ALIAS (DNRALC01)
 SEARCHLIST (DNRSLC01)
 NETWORKPREF (DNRNPC00)
 HOSTTABLE (DNRHST01)
 NETWORK (DNRNET00)
 PROTOCOL (DNRPRT00)
 SERVICES (DNRSVC00)
 CYCLEMAX (04)
 QUERYWAIT (3)
 MAXSENDS (05)
 RECURSIVE
 NOTRACE
 NOINTERNALTRACE

6–42 Customization Guide

DNR Customization Examples

New PARM member
START01

The start command for the DNR task group includes the new DNRCFG01
member. A new PARM data set member, START01, is created using the
START00 member as the model. The START DNR statement is modified to
specify DNRCFG01 as the new primary configuration member.
START API
START ACP
START DNR CNFG(01)
START MAP
START SNM

Finally, the JCL procedure to run Unicenter TCPaccess replaces the
CMND=START00 keyword of the PROC statement with CMND=START01. This
invokes the new PARM member START01 when Unicenter TCPaccess begins.

Migration of DNR to DNS

UVW, Inc. has a single Ethernet. Connected to the Ethernet is an MVS system
running Unicenter TCPaccess and several workstations. This ethernet is attached
to the Internet via a single IP router. The ethernet was assigned the class C
internet address 192.3.17.0. Also, an official domain name of UVW.COM. was
assigned UVW.

The network administrator assigned the MVS system the internet address of
192.3.17.1. Each workstation was assigned the next available host number (i.e.,
192.3.17.2, 192.3.17.3, ...). Lastly, the MVS system was given the host name
MVS.UVW.COM. and the workstations were assigned the names of their user's
concatenated with UVW’s domain name.

The domain name server workstation and the IP router have not been purchased.
However, the network administrator customized the DNR configuration
members to facilitate the conversion from LOCAL to GLOBAL configuration.
The GLOBAL statement DNR operand in APPCFGxx also needs to be updated
from LOCAL to GLOBAL mode.

Domain Name Resolver (DNR) Configuration 6–43

DNR Customization Examples

New PARM Member
DNRHST01

A new host configuration member, DNRHST01, is created listing the host names
and internet addresses of the MVS system and workstations. Note that each host
name ends with a period (.).
LOOPBACK.UVW.COM. 127.0.0.1 Required Entry
MVS.UVW.COM. 192.3.17.1 TCP/IP HOST
BILL.UVW.COM. 192.3.17.2 WORKSTATIONS
JOE.UVW.COM. 192.3.17.3
HARRY.UVW.COM. 192.3.17.4
ROBERT.UVW.COM. 192.3.17.5
JOHN.UVW.COM. 192.3.17.6
LINDA.UVW.COM. 192.3.17.7
DON.UVW.COM. 192.3.17.8
TOM.UVW.COM. 192.3.17.9
ANN.UVW.COM. 192.3.17.11
MARY.UVW.COM. 192.3.17.12
JACKIE.UVW.COM. 192.3.17.13
CHARLIE.UVW.COM. 192.3.17.14

New PARM Member
DNRALC01

One of the workstation users, Robert, is known by both his formal name and by
the nickname Bob. A new alias configuration member, DNRALC01, is created to
assign an alias for ROBERT. In addition to the alias for Robert, there is a required
alias entry to map the Unicenter TCPaccess subsystem name to the host name.
An entry to map ACSS to MVS.UVW.COM. is included in DNRALC01. An entry
to map the MVS system name defined in SYS1.PARMIB(IEASYSxx) to the local
IP address is on the last line.
ACSS MVS.UVW.COM. TCP/IP SUBSYSTEM NAME

BOB ROBERT.UVW.COM. ALIAS BOB FOR HOST NAME ROBERT

IP01 192.3.17.1

New PARM Member
DNRSLC01

A new search list member, DNRSLC01, is created. Two entries are included to
enable users to specify host names as partially qualified names (not including the
trailing period). Without this member, users must enter the fully qualified host
names that are listed in the DNRHST01 member. A UVW.COM. entry is
included to enable users to specify host name labels. Therefore, if the host name
MARY is entered, UVW.COM is appended to the end forming the host name
MARY.UVW.COM., which is in the DNRHST01 member. The second entry, a
period (.), is included to enable users to specify host names without the trailing
period. For example, if the host name MARY.UVW.COM is entered, the period is
appended to the end forming the host name MARY.UVW.COM. which is in the
DNRHST01 member.
UVW.COM.

.

6–44 Customization Guide

DNR Customization Examples

New PARM Member
DNRCFG01

To ensure that all requests are processed in LOCAL mode (not communicating
with a name server), the NAMESERVER operand is updated to specify NONE.

The primary configuration member must be modified to include the new
secondary configuration members. A new DNRCFG01 member is created using
DNRCFG00 as a model. DNRCFG01 includes the new secondary members. Note
that only the NAMESERVER, ALIAS, SEARCHLIST, and HOSTTABLE
keywords are modified.
===

*SPECIFY POOL CONFIGURATION PARAMETERS
===
POOLDEF NAME (DSRB)
 INITIAL (16)
 MINIMUM (24)
 EXPAND (8)
===
*SPECIFY DNR START UP PARAMETERS
==*
DNR APISUBSYS (****)
 NAMESERVER (NONE)
 ALIAS (DNRALC01)
 SEARCHLIST (DNRSLC01)
 NETWORKPREF (DNRNPC00)
 HOSTTABLE (DNRHST01)
 NETWORK (DNRNET00)
 PROTOCOL (DNRPRT00)
 SERVICES (DNRSVC00)
 CYCLEMAX (04)
 QUERYWAIT (3)
 MAXSENDS (05)
 RECURSIVE
 NOTRACE
 NOINTERNALTRACE

New PARM Member
START01

The start command for the DNR task group must be modified to include the new
DNRCFG01 member. A new PARM data set member, START01, is created using
the START00 member as the model. The START DNR statement is modified to
specify DNRCFG01 as the new primary configuration member.
START API
START ACP
START DNR CNFG (01)
START MAP
START SNM

Finally, the JCL procedure to run Unicenter TCPaccess is modified to replace the
CMND=START00 keyword of the PROC statement to CMND=START01. This
invokes the new PARM member START01 when Unicenter TCPaccess begins.

After several weeks of running the DNR in LOCAL mode, the domain name
server workstation and IP router are purchased, installed, and configured. The
domain name server is assigned the internet address of 192.3.17.100 and host
name of NS.UVW.COM. The internet router is assigned the internet address of
192.3.17.101.

Domain Name Resolver (DNR) Configuration 6–45

DNR Customization Examples

APPPCFG01, the customized copy of APPCFG00, is edited and the DNR
parameter on the GLOBAL statement changed from LOCAL to GLOBAL mode.
GLOBAL mode is configured by specifying a decimal value that specifies the
maximum time the DNR spends processing a Unicenter TCPaccess request.
.

.

.
HOST DNR (* 30) /* Global requests, 30 sec maxwait */
 TIMEZ (EASTERN)
 LUPARM (ACPLUPOS)
 SSN (ACSS)
 ACBNAME (ACCES)
 XSEC (GLBLACT)
 JES (2 JES2 JES2 $)
 VSREPORT
.
.
.

New PARM Member
DNRNSC01

The name server configuration member, DNRNSC01, is created indicating
NS.UVW.COM. as a name server for the UVW.COM. domain. A root level
domain name server is also included as a backup to the UVW.COM. name
server. The NAMESERVER operand of the DNRCFG01 member must be
modified from NONE to DNRNSC01.
UVW.COM.NS.UVW.COM.192.3.17.100 UVW's domain name server

.A.ISI.EDU.26.3.0.13EDU domain name server

New PARM Member
DNRNPC01

Multiple name servers are included in the DNRNSC01 configuration member.
Therefore, a new DNRNPC01 is configured to instruct the DNR the name server
order to use. A new network preference member, DNRNPC01, is created with
one entry defined. This entry, 192.3.17.00, instructs the DNR to query
NS.UVW.COM. first. NS.UVW.COM. is a recursive name server. A recursive
name server guarantees an answer, therefore, DNRNPC01 contains only one
entry.

In addition, the DNRCFG01 primary configuration member must be modified to
include the new DNRNPC01 configuration member. Only the NETWORKPREF
keyword is modified.
192.3.17 Our local subnet has highest preference

6–46 Customization Guide

DNR Customization Examples

DNR with Only the Domain Name System

The University of Somewhere, USW, has several Ethernets that have been in
place for many years. They have participated in the Domain Name System for a
long time. They have a primary and a backup domain name server to resolve
requests for the USW.EDU. domain.

Recently, they upgraded their host computing system to include an IBM
mainframe running MVS/ESA. Attached to this IBM host are 3270 series
terminals for the students to use. Unicenter TCPaccess is installed to enable
students and faculty using the IBM system to connect to non-IBM hosts both on
and off the USW campus.

The MVS system running Unicenter TCPaccess is assigned the internet address
137.35.15.139. The primary domain name server, WISDOM.USW.EDU., is
assigned the internet address 137.35.3.1. The backupdomain name server,
KNOWLEDGE.USW.EDU. is assigned the internet address 137.35.15.1.

New PARM member
DNRALCSW

The MVS system running Unicenter TCPaccess is assigned the host name
BIGBLUE.USW.EDU. An alias of MVSESA is also defined. A new alias member,
DNRALCSW, is created. This member includes the required entry mapping the
Unicenter TCPaccess subsystem to its host name. The subsystem name is
changed to USW1. DNRALCSW and includes entries for MVSESA alias and
TEST. The SYSNAME parameter has been set to BLUE in
SYS1.PARMIB(IEASYSxx). The SYSNAME parmater BLUE will be mapped to
the local IP address.
USW1 BIGBLUE.USW.EDU. Required alias for Subsystem
MVSESA BIGBLUE.USW.EDU. Alias known to students
TEST 127.0.0.1 Alias for testing in loopback mode
BLUE 137.35.15.139 Map SYS1.PARMLIB(IEASYSxx) SYSNAME to local IP

New PARM Member
DNRSLCSW

A new search list member, DNRSLCSW, is created. Two entries are included to
enable users to specify host names as a partially qualified name (not including
the trailing period). Without this member, users are required to enter the fully
qualified host names of all remote hosts.

A UVW.EDU. entry is included to enable users to specify host name labels. The
second entry, period (.), is included to enable users to specify host names
without the trailing period.
USW.EDU. First try appending USW.EDU. to the name

. Then try appending . to the name

New PARM Member
DNRNSCSW

A new name server configuration member, DNRNSCSW, is created. The
USW.EDU. name servers are included as well as two EDU. name servers.
USW.EDU. WISDOM.USW.EDU. 137.35.3.1 Primary server

USW.EDU. KNOWLEDGE.USW.EDU. 137.35.15.1 Backup server
EDU. A.ISI.EDU. 26.3.0.103 EDU server
EDU. A.ISI.EDU. 128.9.0.107 EDU server

Domain Name Resolver (DNR) Configuration 6–47

DNR Customization Examples

New PARM Member
DNRNPCSW

Multiple name servers are included in the DNRNSCSW configuration member.
Therefore, a new DNRNPCSW tells the DNR what name server order to use. A
new network preference member, DNRNPCSW, defines three entries.

The first entry, 137.35.15, instructs the DNR to query KNOWLEDGE.USW.EDU.
first. The second entry, 137.35.3, instructs the DNR to query
WISDOM.USW.EDU. second if KNOWLEDGE.USW.EDU. does not have an
answer.

The DNRNPCSW is also used by the DNR to order returned address lists when a
remote host is multihomed. The third entry, 137.35, is included to instruct the
DNR to order any internet address with a network number of 137.35.0.0 after
addresses with networks 137.35.15 or 137.35.3. Internet address with network
numbers not included in DNRNPCSW are ordered last.
137.35.15 Our local subnet has highest preference
137.35.3 This subnet is preferred also
137.35 Our network takes preference above other networks

New PARM Member
DNRCFGSW

The primary configuration member includes the new secondary configuration
members. A new DNRCFGSW member is created using DNRCFG00 as a
model. DNRCFGSW includes the new secondary members. Note that only the
NAMESERVER, ALIAS, SEARCHLIST, and NETWORKPREF keywords are
modified.
===

* SPECIFY POOL CONFIGURATION PARAMETERS
===
POOLDEF NAME (DSRB)
 INITIAL (16)
 MINIMUM (24)
 EXPAND (8)
===
* SPECIFY DNR START UP PARAMETERS
===
DNR APISUBSYS (****)
 NAMESERVER (DNRNSCSN)
 ALIAS (DNRALCSW)
 SEARCHLIST (DNRSLCSW)
 NETWORKPREF (DNRNPCSW)
 HOSTTABLE (DNRHST00)
 NETWORK (DNRNET00)
 PROTOCOL (DNRPRT00)
 SERVICES (DNRSVC00)
 CYCLEMAX (04)
 QUERYWAIT (3)
 MAXSENDS (05)
 RECURSIVE
 NOTRACE
 NOINTERNALTRACE

6–48 Customization Guide

DNR Customization Examples

New PARM Member
STARTUSW

The start command for the DNR task group must be modified to include the
new DNRCFGSW member. A new PARM data set member, STARTUSW, is
created using the START00 member as the model. The START DNR statement
is modified to specify DNRCFGSW as the new primary configuration member.
START API
START ACP
START DNR CNFG(SW)
START MAP
START SNM

Finally, the JCL procedure to run Unicenter TCPaccess is modified to replace the
CMND=START00 keyword of the PROC statement to CMND=STARTUSW. This
invokes the new PARM member STARTUSW when Unicenter TCPaccess begins.

DNR Configuration Set for a Network with a Domain Name Server

This example shows a network with a router that is configured for DNR in
GLOBAL mode. A complete set of sample DNR files for this configuration is
included in this section. The filenames all end in WG to indicate GLOBAL.

mainunix.xyz.com
136.42.50.20

router.xyz.com
136.42.50.1

sun.xyz.com
136.42.50.10

mvs.xyz.com
136.42.50.30

pc2.xyz.com
136.42.50.12

mac.xyz.com
136.42.50.14

vm.xyz.com
136.42.50.16

unix2.xyz.com
136.42.50.18

pc1.xyz.com
136.42.50.40

Using DNR with domain name servers (GLOBAL mode) requires that the DNR
parameter be set to DNR (* timevalue) on the GLOBAL statement in file
APPCFGxx.

MVS host mvs.xyz.com (IP address 136.42.50.30) exists on network xyz.com.

The SYSNAME parameter defined as IP01 inside SYS1.PARMIB(IEASYSxx) is
mapped to the local IP address to assist in DNR services for HPNS and IUCV
applications.

Domain Name Resolver (DNR) Configuration 6–49

DNR Customization Examples

Host mainunix.xyz.com (IP address 136.42.50.20) acts as the primary domain
name server on network xyz.com. The NONRECURSIVE parameter in file
DNRCFGWG tells the MVS host to use other domain name servers as it learns
about them.

Access to the internet is via the router named router.xyz.com at IP address
136.42.50.1. While router.xyz.com is not needed in the DNR configuration files, it
will be placed on a ROUTE statement in file TCPCFGxx.

Files ending with suffix 00 (for example, DNRPRT00, DNRPCC00, and
DNRSVC00) are not shown because they are the same as the default distributed
versions and rarely need to be updated at a site.

Sample Unicenter TCPaccess DNR configuration files for running MVS host
mvs.xyz.com with a name server on its local network are given in the following
sections.

DNRALCWG
ACSS MVS.XYZ.COM.
MVS MVS.XYZ.COM.
MAINUNIX MAINUNIX.XYZ.COM.
LOOPBACK 127.0.0.1
LOCALHOST 127.0.0.1
IP01 136.42.50.30

DNRCFGWG
==

* SPECIFY POOL CONFIGURATION PARAMETERS
==
POOLDEF NAME (DSRB)
 INITIAL (16)
 MINIMUM (24)
 EXPAND (8)
==
* SPECIFY DNR START UP PARAMETERS
==
DNR APISUBSYS (****)
 NAMESERVER (DNRNSCWG)
 ALIAS (DNRALCWG)
 SEARCHLIST (DNRSLCWG)
 NETWORKPREF (DNRNPCWG)
 HOSTTABLE (DNRHSTWG)
 NETWORK (DNRNETWG)
 PROTOCOL (DNRPRT00)
 RPCNAMES (DNRRPC00)
 SERVICES (DNRSVC00)
 CYCLEMAX (04)
 QUERYWAIT (03)
 MAXSENDS (03)
 MAXTIME (90)
 NONRECURSIVE
 TRACE
 INTERNALTRACE

6–50 Customization Guide

DNR Customization Examples

DNRHSTWG
MVS.XYZ.COM. 136.42.50.30
MVS. 136.42.50.30
ACSS. 136.42.50.30
MAINUNIX.XYZ.COM. 136.42.50.20
MAINUNIX. 136.42.50.20
LOCALHOST. 127.0.0.1
LOOPBACK. 127.0.0.1

DNRNETWG
ETHERNET2 136.42.50 LOCAL HOST NETWORK
NICDDN 192.67 OPTIONAL LINE WHEN CONNECTED TO INTERNET
ARPANET 10 OPTIONAL LINE WHEN CONNECTED TO INTERNET
MILNET 26 OPTIONAL LINE WHEN CONNECTED TO INTERNET

DNRNPCWG
136.42.50 PUT OUR LOCAL NETWORK FIRST
192.67 NIC.DDN OPTIONAL INTERNET NETWORK
10 THEN OPTIONAL ARPANET NETWORK
26 THEN OPTIONAL MILNET NETWORK

DNRNSCWG
IN-ADDR.ARPA. MAINUNIX.XYZ.COM. 136.42.50.20
XYZ.COM. MAINUNIX.XYZ.COM. 136.42.50.20
. MAINUNIX.XYZ.COM. 136.42.50.20
. NS.NIC.DDN.MIL. 192.67.67.53

DNRSLCWG
XYZ.COM.
COM.
. ROOT

Domain Name Resolver (DNR) Configuration 6–51

DNR Customization Examples

DNR Configuration Set Without a Domain Name Server

This example shows a network to be configured for DNR with no domain name
servers. A complete set of sample DNR files for this configuration is included in
this section. The filenames all end in WL to indicate LOCAL.

mainunix.xyz.com
136.42.50.20

router.xyz.com
136.42.50.1

sun.xyz.com
136.42.50.10

mvs.xyz.com
136.42.50.30

pc2.xyz.com
136.42.50.12

mac.xyz.com
136.42.50.14

vm.xyz.com
136.42.50.16

unix2.xyz.com
136.42.50.18

pc1.xyz.com
136.42.50.40

Using DNR without domain name servers (LOCAL mode) requires that the DNR
parameter be set to LOCAL on the GLOBAL statement in file APPCFGxx.

MVS host mvs.xyz.com (IP address 136.42.50.30) exists on network xyz.com.

The SYSNAME parameter defined as IP01 inside SYS1.PARMIB(IEASYSxx) will
be mapped to the local IP address to assist in DNR services for HPNS and IUCV
applications.

Since there are no name servers on the local network xyz.com, all hosts on the
network should be placed in files DNRALCxx and DNRHSTxx. When running
DNR in LOCAL mode there is no need to configure files DNRNETxx and
DNRNSCxx. File DNRCFGWL accomplishes this by placing NETWORK(NONE)
and NAMESERVER(NONE) on the DNR statement.

Access to the internet is via the router named router.xyz.com at IP address
136.42.50.1. While router.xyz.com is not needed in the DNR configuration files, it
will be placed on a ROUTE statement in file TCPCFGxx.

Files ending with suffix 00 (for example, DNRPRT00, DNRPCC00, and
DNRSVC00) are not shown because they are the same as the default distributed
versions and rarely need to be updated at a site.

6–52 Customization Guide

DNR Customization Examples

Sample Unicenter TCPaccess DNR configuration files for running MVS host
mvs.xyz.com with a name server on its local network are given in the sections
that follow.

DNRALCWL
ACSS MVS.XYZ.COM.
MVS MVS.XYZ.COM.
SUN SUN.XYZ.COM.
PC2 PC2.XYZ.COM.
MAC MAC.XYZ.COM.
VM VM.XYZ.COM.
UNIX2 UNIX2.XYZ.COM.
MAINUNIX MAINUNIX.XYZ.COM.
PC1 PC1.XYZ.COM.
LOOPBACK 127.0.0.1
LOCALHOST 127.0.0.1
IP01 136.42.50.30

DNRCFGWL
==

* SPECIFY POOL CONFIGURATION PARAMETERS
==
POOLDEF NAME (DSRB)
 INITIAL (16)
 MINIMUM (24)
 EXPAND (8)
==
* SPECIFY DNR START UP PARAMETERS
==
DNR APISUBSYS (****)
 ALIAS (DNRALCWL)
 SEARCHLIST (DNRSLCWL)
 NAMESERVER (NONE)
 NETWORKPREF (DNRNPCWL)
 HOSTTABLE (DNRHSTWL)
 NETWORK (NONE)
 PROTOCOL (DNRPRT00)
 RPCNAMES (DNRRPC00)
 SERVICES (DNRSVC00)
 CYCLEMAX (03)
 QUERYWAIT (2)
 MAXSENDS (10)
 MAXTIME (90)
 RECURSIVE
 TRACE
 INTERNALTRACE

Domain Name Resolver (DNR) Configuration 6–53

DNR Customization Examples

DNRHSTWL
MVS.XYZ.COM. 136.42.50.30
MVS. 136.42.50.30
ACSS. 136.42.50.30
SUN.XYZ.COM. 136.42.50.10
SUN. 136.42.50.10
PC2.XYZ.COM. 136.42.50.12
PC2. 136.42.50.12
MAC.XYZ.COM. 136.42.50.14
MAC. 136.42.50.14
VM.XYZ.COM. 136.42.50.16
VM. 136.42.50.16
UNIX2.XYZ.COM. 136.42.50.18
UNIX2. 136.42.50.18
MAINUNIX.XYZ.COM. 136.42.50.20
MAINUNIX. 136.42.50.20
PC1.XYZ.COM. 136.42.50.40
PC1. 136.42.50.40
LOCALHOST. 127.0.0.1
LOOPBACK. 127.0.0.1

DNRNPCWL
136.42.50 PUT OUR LOCAL NETWORK FIRST
192.67 NIC.DDN OPTIONAL INTERNET NETWORK
10 THEN OPTIONAL ARPANET NETWORK
26 THEN OPTIONAL MILNET NETWORK

DNRSLCWL
XYZ.COM.
COM.
. ROOT

6–54 Customization Guide

DNR Customization Examples

DNR Configuration Set with a Domain Name Server and a Firewall

This example shows a network to be configured for DNR with a domain name
server and a firewall. A complete set of sample DNR files for this configuration is
included in this section. The file names all end in WF to indicate Firewall.

Firewall

mainunix.xyz.com
136.42.50.20

sun.xyz.com
136.42.50.10

mvs.xyz.com
136.42.50.30

pc2.xyz.com
136.42.50.12

mac.xyz.com
136.42.50.14

vm.xyz.com
136.42.50.16

unix2.xyz.com
136.42.50.18

pc1.xyz.com
136.42.50.40

Using DNR with domain name servers (GLOBAL mode) requires that the DNR
parameter be set to DNR(* timevalue) on the GLOBAL statement in file
APPCFGxx.

MVS host mvs.xyz.com (IP address 136.42.50.30) exists on network xyz.com.

The SYSNAME parameter defined as IP01 inside SYS1.PARMIB(IEASYSxx) will
be mapped to the local IP address to assist in DNR services for HPNS and IUCV
applications.Host mainunix.xyz.com (IP address 136.42.50.20) acts as the only
domain name server on network xyz.com. The RECURSIVE parameter in file
DNRCFGWF tells the MVS host to use only domain name servers in its
nameserver list (DNRNSCWF).

Important! The RECURSIVE parameter must be set for DNR to function correctly
behind a firewall.

Access to the internet is only allowed from host mainunix.xyz.com at IP address
136.42.50.20.

Files ending with suffix 00 (for example, DNRPRT00, DNRPCC00, and
DNRSVC00) are not shown because they are the same as the default distributed
versions and rarely need to be updated at a site.

Domain Name Resolver (DNR) Configuration 6–55

DNR Customization Examples

Sample DNR configuration files for running MVS host mvs.xyz.com with a name
server on its local network behind a firewall are given below.

DNRALCWF
ACSS MVS.XYZ.COM.
MVS MVS.XYZ.COM.
MAINUNIX MAINUNIX.XYZ.COM.
LOOPBACK 127.0.0.1
LOCALHOST 127.0.0.1
IP01 136.42.50.30

DNRCFGWF
==

* SPECIFY POOL CONFIGURATION PARAMETERS
==
POOLDEF NAME (DSRB)
 INITIAL (16)
 MINIMUM (24)
 EXPAND (8)
==
* SPECIFY DNR START UP PARAMETERS
==
DNR APISUBSYS (****)
 NAMESERVER (DNRNSCWF)
 ALIAS (DNRALCWF)
 SEARCHLIST (DNRSLCWF)
 NETWORKPREF (DNRNPCWF)
 HOSTTABLE (DNRHSTWF)
 NETWORK (DNRNETWF)
 PROTOCOL (DNRPRT00)
 RPCNAMES (DNRRPC00)
 SERVICES (DNRSVC00)
 CYCLEMAX (04)
 QUERYWAIT (03)
 MAXSENDS (03)
 MAXTIME (90)
 RECURSIVE
 TRACE
 INTERNALTRACE

DNRHSTWF
MVS.XYZ.COM. 136.42.50.30
MVS. 136.42.50.30
ACSS. 136.42.50.30
MAINUNIX.XYZ.COM. 136.42.50.20
MAINUNIX. 136.42.50.20
LOCALHOST. 127.0.0.1
LOOPBACK. 127.0.0.1

6–56 Customization Guide

DNR Customization Examples

DNRNETWF
ETHERNET2 136.42.50 LOCAL HOST NETWORK

DNRNPCWF
136.42.50 PUT OUR LOCAL NETWORK FIRST

DNRNSCWF
IN-ADDR.ARPA. MAINUNIX.XYZ.COM. 136.42.50.20
XYZ.COM. MAINUNIX.XYZ.COM. 136.42.50.20
. MAINUNIX.XYZ.COM. 136.42.50.20

DNRSLCWF
XYZ.COM.
COM.
. ROOT

Domain Name Resolver (DNR) Configuration 6–57

Chapter

7
UNIX System Services
Configuration

This chapter provides guidelines to help you configure Application Program
Interfaces (APIs) for use with UNIX System Services and Unicenter TCPaccess.

The following topics are discussed in this chapter:

■ Configuring for UNIX System Services—Describes information on how to
configure applications to use UNIX System Services

■ SYS1.PARMLIB (BPXPRMxx)—Describes the BPXPRMxx member

■ Using the Unicenter TCPaccess Stack Only—Describes configuration changes
for Unicenter TCPaccess

■ Common Inet Support—Describes configuration for Common Inet Support

■ Startup Configuration—Describes startup considerations

■ Host Name/Address Resolution—Describes host name considerations

■ UNIX System Services Telnet Daemon Access—Describes the use of the
Telnet Daemon for UNIX System Services

■ OpenEdition Timer Daemon Access—Describes the use of the Timer
Daemon for UNIX System Services

UNIX System Services Configuration 7–1

Configuring for UNIX System Services

Configuring for UNIX System Services
Some of the configuration information for Unicenter TCPaccess UNIX System
Services Converged socket support is provided in this chapter. For complete
information on configuration and using Unicenter TCPaccess UNIX System
Services Converged Socket support, refer to the C/Socket Programmer’s Reference
and IBM’s MVS/ESA: Planning Open Edition MVS, BPXB2 MO4/5 SC23-3015-
01/02.

SYS1.PARMLIB (BPXPRMxx)
To use Unicenter TCPaccess UNIX System Services sockets, you must edit the
configuration member for UNIX System Services, BPXPRMxx. This member is in
the MVS/ESA system configuration data set, SYS1.PARMLIB.

For detailed information regarding the UNIX System Services MVS PARMLIB
Member, refer to UNIX System Services MVS manual SC23-3015. The format of
this member changes in version 5.2.2 of UNIX System Services.

You can configure your UNIX System Services support in either of two ways:

■ You can use the Unicenter TCPaccess stack only

■ You can configure to use common Inet support (more than one physical file
system)

7–2 Customization Guide

Using the Unicenter TCPaccess Stack Only

 Using the Unicenter TCPaccess Stack Only
This section describes the statements you need to change in BPXPRMxx to use
only the Unicenter TCPaccess stack.

FILESYSTYPE Statement

To identify the Unicenter TCPaccess PFS (Physical File System) to UNIX System
Services MVS, you must add the following statement to BPXPRMxx:
FILESYSTYPE TYPE (filesysname) ENTRYPOINT (T010PFSA)

 [PARM (‘SYSID (xxxx)’)]

FILESYSTYPE Statement Syntax

TYPE(filesysname) Specifies the name of the PFS. This name can be configured and be one – to eight-
characters long.

This same name must also be specified on the NETWORK statement (see the
NETWORK Statement).

ENTRYPOINT(T010PFS)

Specifies the load module entry point for initialization.

PARM (‘SYSID (xxxx)’)

 Specifies the subsystem ID of Unicenter TCPaccess (xxxx).

Default: ACSS.

Asynchronous Open Edition Socket Support

For asynchronous Open Edition Socket support for the 5.2 release, the entry
point should be defined as:
FILESYSTYPE TYPE (ICPRD) ENTRYPOINT (T010PFSA)
[PARM (‘SYSID (ACSS)’)]

UNIX System Services Configuration 7–3

Using the Unicenter TCPaccess Stack Only

NETWORK Statement

You also need to change the NETWORK statement to assign socket domains or
address families to Unicenter TCPaccess PFS
NETWORK TYPE (filesysname)

 DOMAINNAME (AF_INET)
 DOMAINNUMBER (domain_number)
 MAXSOCKETS (num_sockets)

NETWORK Statement Syntax

TYPE (filesysname) Specifies the name of the PFS. This name must match the TYPE operand used on
the FILESYSTYPE statement that defined the PFS (see FILESTYPE statement).

DOMAINNAME (AF_INET)

 Specifies the domain, or address family. This can be any user-defined named.

 Default: AF_INET.

DOMAINNUMBER (domain_number)

 Specifies the numeric value of the domain that is passed by programs that call
socket().

A value of two should be used, but is not required. Certain name resolution
functions will not work if domain two is not defined.

MAXSOCKETS (num_sockets)

 Specifies the maximum number of currently active sockets that are supported.

7–4 Customization Guide

Common Inet Support

Common Inet Support
This section describes the changes that you need to make to BPXPRMxx to
support more than one AF_INET physical file system.

For more information on common Inet support, read MVS/ESA: Planning Open
Edition MVS, BPXB2 MO4/5 SC23-3015-01/02.

FILESYSTYPE Statement

To use common Inet support, you must add the following statement to
BPXPRMxx:
FILESYSTYPE TYPE (filesysname) ENTRYPOINT (BPXTCINT)
 [PARM (SYSID (xxxx))

FILESYSTYPE Statement Syntax

TYPE (filesysname) Specifies the name of the PFS. This name may be configured and can be one to
eight characters long. For common Inet support, set this to CINET.

ENTRYPOINT (BPXTCINT)

 Specifies the load module entry point for initialization.

PARM (SYSID (xxxx))

 Specifies the subsystem ID of Unicenter TCPaccess (xxxx).

 Default: ACSS.

UNIX System Services Configuration 7–5

Common Inet Support

SUBFILESYSTYPE Statement

To use common Inet support, you must add the following statement to
BPXPRMxx for each PFS you want to use:
SUBFILESYSTYPE NAME (TCPPFS1) TYPE (CINET) ENTRYPOINT(T010PFS)
 [PARM (SYSID (xxxx))

SUBFILESYSTYPE Statement Syntax

TCPPFS1 Specifies the name of the PFS.

CINET Specifies to use common Inet support. TYPE names must match on all
FILESYSTYPE and SUBFILESYSTYPE statements.

T010PFS Specifies the load module entry point for initialization.

PARM (SYSID (xxxx))

 Specifies the subsystem ID (xxxx).

Default: ACSS.

NETWORK Statement

The following NETWORK statement is for common Inet support only.
NETWORKTYPE (CINET) DOMAINNAME (AF_INET)

 DOMAINNUMBER (2)
 MAXSOCKETS(4096)
 INADDRANYPORT(63000)
 INADDRANYCOUNT(1000)

NETWORK Statement Syntax

NETWORKTYPE (CINET)

 Specifies to use common Inet support.

DOMAINNAME (AF_INET)

Specifies the domain, or address family. This can be any name you choose

DOMAINNUMBER (2)

 Specifies the domain, or address family. This can be any number you choose

MAXSOCKETS (4096) Specifies the maximum number of currently active sockets that are supported.

7–6 Customization Guide

Common Inet Support

INADDRANYPORT (63000)

Specifies the maximum port number for applications to use.

You must also specify PORTASGN to exclude this range of ports in your TCP
statement in the TCPCFGxx member of Unicenter TCPaccess.

See Common Inet and USS (OE) Considerations for additional information on
INADDRANYPORT.

INADDRANYCOUNT (1000)

Specifies the maximum count of ports an application can use for Unix System
Services.

You must also specify PORTASGN in your TCP statement in the TCPCFGxx
member.

Note: All TCP/IP stacks configured for CINET must be configured with the
equivalent port controls (PORTASGN, Port Rules, and BPXPARM configuration.)

Common Inet and USS (OE) Considerations

The common Internet (CINET) configuration allows more than one TCP stack to
be attached to USS (OE). Certain socket requests are propagated to all stacks and
any errors that occur are reflected back to the caller. This allows flexibility in use
of particular ports, but does introduce dependencies.

In particular, only USS (OE) can allocate ports in the range defined by the
INADDRYPORT and INADDRANYCOUNT parameters in BPXPRMxx; any
other stack (such as Unicenter TCPaccess) cannot bind() to a port in this range.
Unicenter TCPaccess (TLI, IUCV, or HPNS) does not enforce the difference
between requesting that a port be assigned (a bind to port 0=INADDRANY) and
requesting a particular port (bind to a port number). In other words, one could
request a particular port within the ‘portasgn’ range and not get an error. USS
(OE) does enforce this difference.

Note: The PORTASGN parameter (in member TCPCFGxx) defines a similar
range but does not restrict application allocations within the range. Only USS
(OE) appears to be enforcing this.

To resolve this, move the INADDRANY port range to a higher (unused) set of
socket numbers, or change the applications to not use port numbers within the
reserved range.

UNIX System Services Configuration 7–7

Startup Configuration

Startup Configuration
UNIX System Services must be configured to execute program T010PFS upon
start-up. To do this, the PFSLOAD data set must be added to the STEPLIB DD
statement in the OMVS cataloged procedure. See SYS1.PARMLIB (BPXPRMxx)
for details on configuring UNIX System Services.

Host Name/Address Resolution
If you will be using Unicenter TCPaccess UNIX System Services sockets, the
method used to resolve host names and addresses is different than that used for
the Unicenter TCPaccess socket API. UNIX System Services MVS uses the
LE/370 runtime libraries to perform certain socket related functions such as
gethostbyname(), getprotobyname(), and so forth. To perform this functionality,
the LE/370 runtime library (RTL) reads specific MVS data sets to map services to
names and to obtain domain name resolution configuration information.

Refer to the IBM publication OS/390 Unix System Services SC28-1890, and the
section titled “How OS/390 UNIX Uses TCP/IP Dataset Names” for a complete
description of the method and the data set members that you will need.

UNIX System Services Telnet Daemon Access
The Unicenter TCPaccess UNIX System Services Telnet daemon is designed to
interface with Open Edition or OS/390 UNIX applications on the mainframe. In
the following discussions, when referring to OS/390 UNIX, the Open Edition
environment is implied as are the OS/390 UNIX System Services.

While it has been customary for TELNET users to access port 23 and then
connect to a VTAM application, TELNET users can now connect to OS/390
UNIX applications using the services of INETD and the USS shell. The INETD
Daemon provides service management for a network and starts the rlogind
program whenever there is a remote login request from a workstation. The USS
shell is normally invoked during the login process.

Typical terminal types that function as Telnet terminals are VT52, VT100, VT220,
VT320, or terminal emulators that can emulate one of these types in NVT mode.

7–8 Customization Guide

UNIX System Services Telnet Daemon Access

Since port 23 is normally reserved for Telnet and TN3270 users accessing VTAM
applications, the Telnet daemon should be configured to listen on a different
port. A port should be chosen in the TCP PORTASGN range (see Fine-tuning the
Transmission Control Protocol in the chapter “TCP, UDP, RAW and IP Protocol
Configuration (TCPCFGxx)” for more information). This range defaults to
(1:4095). Try not to use one of the well known ports, or ports that will be
allocated to other applications. For example, you may choose to use port 1023 or
2023. Once the port is defined, the Telnet user then configures their Telnet client
software to connect to this port.

Configuration statements are also included in the /etc/inetd.conf file to define
which ports and parameters are used by the T016TNDP daemon when it is
started by the INETD process. Refer to Configuring T016TNDP to Run from an
MVS Data Set for more information.

There are basically two ways of running the T016TNDP Telnet Daemon. The
more common method uses the INETD environment, where the T016TNDP
module is configured in the INETD.CONF file to use a particular port or ports.
Once OMVS comes up and starts the INETD daemon, the T016TNDP module
starts listening on these ports for activity. If the user is configured for common
INET support, any of the transport drivers under the AF_INET domain could be
used as the access point for the T016TNDP Telnet Daemon module. For example,
if T016TNDP were configured for port 2222 and the user is configured for
common INET support, which includes the Unicenter TCPaccess and IBM
TCP/IP or other Unicenter TCPaccess transport drivers, a Telnet user could
connect to any of the common INET stacks on port 2222 and use T016TNDP to
get to the USS shell environment.

For a discussion of Common INET support, see Common Inet and USS (OE)
Considerations.

T016TNDP can be started in a debug environment. The daemon is started from
the USS shell on a particular port for the duration of one session only.

Note: The T016TIDP daemon follows specifications outlined in RFC 854 on
Telnet Protocol.

UNIX System Services Configuration 7–9

UNIX System Services Telnet Daemon Access

Configuring T016TNDP to Run from an MVS Data Set

The T016TNDP module is distributed in the PFSLOAD data set, which must be
added to the STEPLIB DD statement in the OMVS cataloged procedure. This is
the same requirement exists for adding the Unicenter TCPaccess transport driver
as described in Unicenter TCPaccess Communications Server Getting Started.

To enable T016TNDP to run from an MVS data set, issue the following
commands, in order, from the USS shell, using a super-user ID:

Create the data set if it does not exist:
touch /usr/sbin/t016tndp

Set the permissions to execute only:
chmod 111 /usr/sbin/t016tndp

Turn on the sticky bit so OS/390 UNIX executes the module from an MVS
STEPLIB data set:
chmod +t /usr/sbin/t016tndp

When complete, the permissions will be set as shown in this example:
---x--x--t 1 OMVSKERN OMVSGRP 0 Nov 24 14:33 t016tndp

Configuring T016TNDP to Run in the INETD Environment

The T016TNDP module is configured in the INETD.CONF file to use a particular
port(s). Once UNIX System Services MVS comes up and starts the INETD
daemon, the T016TNDP module will begin listening on this port for activity. The
example below shows a portion of an INETD.CONF file located in the HFS /etc
directory.
Internet server configuration database

Services can be added and deleted by deleting or inserting a
comment character (ie. #) at the beginning of a line

#==
service | socket | protocol | wait/ | user | server | server program
name | type | | nowait| | program | arguments
#==

#telnet stream tcp nowait OMVSKERN /usr/sbin/otelnetd otelnetd
2222 stream tcp nowait OMVSKERN /usr/sbin/t016tndp t016tndp -D all

The last line shows an entry that was added for the T016TNDP using port 2222
and requesting that all debug messages be sent to the debug log.

The following information provides a description of the fields used by the entries
in the configuration file.

7–10 Customization Guide

UNIX System Services Telnet Daemon Access

service_name A well-known service name, such as telnet, or a port number.

socket_type Stream or dgram.

protocol TCP or UDP.

wait_flag WAIT or NOWAIT. WAIT indicates the daemon is single threaded.

If NOWAIT is specified, the INET daemon issues an accept when a connect
request is received on a stream socket.

login_name The user ID and group under which the forked daemon is to execute.

The login_name must have been defined to RACF via ADDUSER as a superuser
with a UID of zero.

server_program Full pathname of the service.

server-arguments Up to 20 arguments. The first argument must be the server name.

See the section on Invoking the T016TNDP Telnet Daemon for Debugging for a
description of the arguments that can be passed to T016TNDP.

Once the /etc/inetd.conf file is updated, the contents will not be read until
INETD is recycled, possibly not until the next IPL.

Choose a port within the TCP PORTASGN range, one that is not a well-known
port nor assigned to any other application. After the new configuration is read by
INETD and T016TNDP is configured to run from the hlq.PSFLOAD data set,
users accessing the Unicenter TCPaccess stack over this port are presented with a
login request for their user ID and password, which must be verified through the
System Authorization Facility. Multiple users can access the UNIX shell from this
port. Multiple logins using the same user ID are allowed.

You can use the NETSTAT command to display port usage on your port and
make sure that the stack is at least listening on the port. If port 2222 were the port
you had configured for T016TNDP, then the command NETSTAT CONN
LOCPORT(2222) might result in the following display:
SNSTCP52 processing: NETSTAT CONN LOCPORT(2222)
TCP OE 10.0.64.52:2222<-->10.0.0.54:3047 Connected
 Bytes: 140 in, 2167 out. Ses# 470 Idle 01:11:56 J=OMVS
TCP OE 10.0.64.52:2222<-->10.0.0.54:3145 Connected
 Bytes: 162 in, 2018 out. Ses# 513 Idle 00:14:43 J=OMVS
TCP OE 0.0.0.0:2222<-->0.0.0.0:0 Listening
 Bytes: 0 in, 0 out. Ses# 420 Idle 02:28:00 J=OMVS
Request complete

UNIX System Services Configuration 7–11

UNIX System Services Telnet Daemon Access

Users are prompted up to three times for a valid user ID and password. The user
has five minutes to enter the user ID after being prompted and then another five
minutes to enter a password. Login failures are recorded in syslog:
syslog: telnetd invalid password on login attempt from:138.42.32.31

Syslog refers to the name of a file defined in the /etc/syslog.conf file. This is
usually /tmp/syslog.log. Two other data sets are important for diagnosing
problems: the error log and the debug log. Again, these two files are defined in
/etc/syslog.conf file and are usually called /tmp/error.log and
/tmp/debug.log.

SAF also records unsuccessful logon attempts to the MVS console as shown in
this example:
ICH408I USER(RLM1) GROUP(XYZENG) NAME(MOYERSTOK, RALPH) 852
 LOGON/JOB INITIATION - INVALID PASSWORD
IRR013I VERIFICATION FAILED. INVALID PASSWORD GIVEN.

OE Telnet Banner Display

When the user logs in, a banner located in the /etc/issue.net file is presented to
the terminal. T016TNDP replaces the following variables contained in the file
with system specific information:

Variable Description

%d Show the current time and date.

%h Show the system node name.

%m Show the machine hardware type.

%r Show the operating system release.

%s Show the name of the operating system.

%t Show the current tty name.

%v Show the operating system version.

%% Display a single '%' character.

7–12 Customization Guide

UNIX System Services Telnet Daemon Access

The following is an example of the contents of the /etc/issue.net file:
/***/
/* */
/* Banner in /etc/issue.net */
/* */
/* Company XYZ OE Telnet Access */

/* %s V%vR%r Node %h */
/* Model %m */

/* */

/* Logging on to %t */
/* At %d */
/* */
/***/

Note: The misalignment of the */ on the right hand side on some of the lines.
These lines have less spaces to accommodate variable values after substitution
that are greater than the size of their label. This banner template results in the
following banner being displayed at the user's terminal prior to login:
/***/
/* */
/* Banner in /etc/issue.net */
/* */
/* Company XYZ OE Telnet Access */
/* */
/* OS/390 V02R06.00 Node NMDD */
/* Model 9672 */
/* Logging on to ttyp0002 */
/* At 09:14 on Monday, 10 May 2000
/* */
/***/

login:

The permissions for the file should be set as follows:
-rwxr----- 1 OMVSKERN OMVSGRP 621 Nov 24 15:25 issue.net

To set permissions correctly, issue the following CHMOD command:
chmod 740 /etc/issue.net

Note: The banner can be suppressed by using the -h parameter. See Invoking the
T016TNDP Telnet Daemon for Debugging for a description of the T016TNDP
parameters.

If -h is not used when activating T016TNDP, thus allowing banners to display,
and yet no /etc/issue.net file exists, a one line banner will display instead. The
following is an example of this one line banner that shows the system version,
release, node name and current tty name:
OS/390 V02R06.00 (NMDD) (ttyp0003)

UNIX System Services Configuration 7–13

UNIX System Services Telnet Daemon Access

Invoking the T016TNDP Telnet Daemon for Debugging

T016TNDP can be started in a debug environment. This will assist you in
tracking down any problems that may be associated with the OE Telnet daemon.
The daemon is started from the USS shell on a particular port for the duration of
one session only. The user ID under which the daemon is started must be a
super-user. During the time that the daemon is up and running, the originating
session (User A) is blocked for input until another user (User B) connects to the
designated port and finally terminates the session. At this point the daemon is
also terminated, and User A can continue entering commands.

To start the T016TNDP Telnet daemon while in the USS shell, issue the following
command:
t016tndp [-debug] [-D (internal | netdata | options | ptydata | report | all)
] [-h] [-l] [-n] [port]

t016tndp Invokes the telnet daemon program

debug This keyword is required when bringing up the T016TNDP in the USS shell.

Note: It should not be used in the INETD environment.

-D Requests display options:

internal Diagnostic information useful for the Unicenter TCPaccess
staff. This level also signals the standard IBM interfaces for
login and logout processing, /bin/fomtlinp and
/bin/fomtlout, to generate diagnostic output.

netdata Displays the data stream received by T016TNDP.

options Prints information about the negotiation of options.

ptydata Displays data written to the pty, or pseudo-terminal.

report Prints the options information, plus some additional
information about what processing is going on.

all Includes output generated for report, internal, netdata,
ptydata and options.

h Specifies that the banners should be suppressed. If -h is not specified, the banner
template in /etc/issue.net is used to present a banner to the terminal prior to
login.

If /etc/issue.net does not exist and -h is not specified, a default, one-line banner
is displayed that indicates the OS390 version, release, node name and the current
tty.

7–14 Customization Guide

UNIX System Services Timer Daemon Access

l Use linemode telnet. Your input is processed after you press enter, rather than a
character at a time.

-n Do not do keepalives.

port The special port that will be used for testing.

UNIX System Services Timer Daemon Access
The T016TIDP Timer Daemon program provides a site-independent, machine-
readable date and time. The use of time-servers makes it possible to quickly
confirm or correct a system's time, by making a brief poll of several independent
sites on the network.

You can access the server using either the Transmission Control Protocol (TCP)
or the User Datagram Protocol (UDP). The server normally listens for a
connection on port 37, although another port can be configured. When the
connection is established, the server returns a 32-bit time value and closes the
connection. If the server is unable to determine the time at its site, it will either
refuse the connection or close it without sending anything.

When called, the Time service returns the number of seconds since 00:00
(midnight) 1 January 1900 GMT. For example, the time 1 is 12:00:01 am on 1
January 1900 GMT. This base will serve until the year 2036.

The T016TICP client is provided as a simple test mechanism and to demonstrate
how the T016TIDP daemon works. For more information, refer to Invoking the
T016TIDP Timer-Synchronization Daemon.

Both the system timer-synchronization daemon and client, T016TIDP and
T016TICP, respectively, are provided in the LOAD data set. If you are running
with the BPX.DAEMON facility class defined, you must ensure that the
hlq.LOAD data set is PADS protected. For information on PADS protected data
sets and configuring the BPX.DAEMON facility class, refer to the Installation
Information section of IBM’s OS/390 eNetwork CS IP Configuration Manual, SC31-
8513, and the Program Control section of OS/390 Security Server (RACF) Security
Administrator's Guide, SC28-1915.

Note: The T016TIDP server follows specifications outlined in RFC 868 on Time
Protocol.

UNIX System Services Configuration 7–15

UNIX System Services Timer Daemon Access

Configuring T016TIDP and T016TICP to Run from MVS

When T016TIDP or T016TICP is invoked under the USS shell, OS/390 UNIX
System Services checks whether the sticky bit is turned on in the HFS. The sticky
bit must be turned on for the executable files in the MVS STEPLIB to be used at
the head of the search order.

To enable T016TIDP or T016TICP to run from an MVS data set, issue the
following commands, in order, from the USS shell, using a super-user ID:

Create the data set if it does not exist:
touch /usr/sbin/t016ticp

touch /usr/sbin/t016tidp

Set the permissions to execute only:
chmod 111 /usr/sbin/t016ticp

chmod 111 /usr/sbin/t016tidp

Turn on the sticky bit so OS/390 UNIX searches the user's STEPLIB for the data
set:
chmod +t /usr/sbin/t016ticp

chmod +t /usr/sbin/t016tidp

When complete, the permissions are set as shown in the following example:
---x--x--t 1 OMVSKERN OMVSGRP 0 Mar 8 10:36 t016ticp
---x--x--t 1 OMVSKERN OMVSGRP 0 Nov 24 14:33 t016tidp

7–16 Customization Guide

UNIX System Services Timer Daemon Access

Invoking the T016TIDP Timer-Synchronization Daemon

To start the T016TIDP timer-synchronization daemon while in the USS shell,
issue the following command:
t016tidp [-l] [-p port] [-a domain]

t016tidp Invokes the timer-synchronization server program.

-l Logging allows all access events to be logged .

 Default: No logging.

-p port Allows the default port of 37 to be overridden by a user-specified port..

 Default: 37.

-a domain Allows the default domain of two to be overridden. Domain two is normally the
domain number assigned to AF_INET in the BPXPRM configuration. If your
configuration is different, use the domain number assigned to AF_INET.

 Default: Two.

If no options are specified, no logging takes place, the server listens on port 37,
and domain two is used as the AF_INET Physical File System (PFS).

Usage Guidelines

Since T016TIDP is a daemon, it requires an OS/390 UNIX shell super-user ID to
start the server and special processing to terminate the server. You can use the
OMVS KILL command to terminate the server.

From an OS/390 UNIX shell super-user ID, issue the kill command for the
process ID (PID) associated with T016TIDP.
kill -s term nnnnnn

where: nnnnnn is the process ID.

Use the following command to find the PID:
D OMVS,U=userid

where; userid is the user id used to start the T016TIDP daemon.

UNIX System Services Configuration 7–17

UNIX System Services Timer Daemon Access

Example

The following example shows the timer daemon start up. Log messages are
generated when clients access the server for a time stamp. Finally, the messages
indicate that the daemon was brought down using the OE kill command for PID
402653193.
t016tidp -l

logsw = 1
TCP socket = 3, UDP socket = 4
TCP T016TIDP 10.0.64.15:1033 at Wed Mar 15 14:39:14 2000

TCP T016TIDP 10.0.64.15:1034 at Wed Mar 15 14:58:27 2000

UDP T016TIDP 10.0.64.15:2266 at Wed Mar 15 14:58:47 2000

CEE5205S The signal SIGTERM was received.
[1] + Done(143) t016tidp -l
 402653193 Terminated ./t016tidp

Invoking the T016TICP Timer-Synchronization Sample Client

The T016TICP timer-synchronization sample client is provided as a testing
mechanism to demonstrate how the T016TICP daemon works. It is assumed that
you will be writing or providing your own timer client to access the daemon and
work with the 32-bit time value that is returned.

To start the T016TICP timer client while in the USS shell, issue the following
command:
t016ticp -l ipaddress -r ipaddress [-p port] [-t | -u] [-d]

t016ticp Invokes the timer-synchronization client program.

-l ipaddress The IP address, in dotted decimal notation, of the local host.

 This is the host used to send the timer request across the internet to the timer
daemon.

-r ipaddress The IP address, in dotted decimal notation, of the remote host.

 This is the host used by the timer daemon listening on port 37 for a timer request.

-p port Allows the default port of 37 to be overridden by a user-specified port.

 If the timer daemon is listening on a port other than 37, this port number should
be included here.

 Default: 37.

7–18 Customization Guide

UNIX System Services Timer Daemon Access

-t | -u Use either TCP (-t) or UDP (-u) as the protocol.

This is determined by which protocol the remote host is using to listen on the
port.

Default: UDP.

-d Debug mode is turned on to give detailed accounting of the session progress.

Default: Debugging suppressed.

The local and remote IP host addresses must be specified. If no additional
options are specified, the client requests a session on port 37, UDP is the protocol
used, and debugging information is suppressed.

Example

The following example shows the timer client starting using UDP, in debug
mode. The debug messages are generated as the timer session progresses, and
finally, the 32-bit time stamp is returned from the timer daemon.
t016ticp -r 10.0.64.55 -l 10.0.64.21 -u -d
T016TICP -r 10.0.64.55
T016TICP -l 10.0.64.21
T016TICP debug is on
T016TICP opened UDP socket# 3
T016TICP local sockaddr_in:
 00020000 0a004015 00000000 00000000
T016TICP bound to port# 3538
T016TICP sendto remote sockaddr_in:
 00020025 0a004037 00000000 00000000
T016TICP sendto UDP port# 37@10.0.64.55
T016TICP received the following response(hex):
 bc77b246

UNIX System Services Configuration 7–19

Chapter

8 Global Application Parameters

This chapter will help you customize global parameters for all applications in
Unicenter TCPaccess.

GLOBAL Parameters (APPCFGxx)
The first statement of APPCFGxx is the GLOBAL statement, which defines global
options for all applications. It is followed by statements specific to the
application. For more information on the statements that follow (APPL, FTP,
GAT, LPR, SERVICE, SMTP, TELNET and TERMPROF) refer to the specific
application chapters.

GLOBAL Statement
GLOBAL [ACBNAME (acbname)]
 [API (subsys | *)]
 [DNR ({ subsys | * } { dnrtime | LOCAL })]
 [GREETING (YES | NO | APPL)]
 [JES (jestype jesname jeslu jessubsyschar)]
 [LUPARM (luparm | NONE)]
 [MIGVOL (volser)]
 [RTMSSID (rtm_ssid)]
 [SMS | NOSMS]
 [SVC99WTO | NOSVC99WTO]
 [TRANTBL (tablename)]

Global Application Parameters 8–1

GLOBAL Parameters (APPCFGxx)

GLOBAL Statement Syntax

ACBNAME (acbname)] Specifies the VTAM primary ACBNAME used to access Unicenter TCPaccess
services through VTAM.

Default: ACCES.

API (subsys | *)] Specifies the subsystem ID for the Application Program Interface.

Use this parameter only if the applications are running in a separate address
space from the TCP stack.

Default: The subsystem ID for the current address space.

DNR ({ subsys | * } { dnrtime | LOCAL })

Specifies options for the Domain Name Resolver.

subsys Only specify the subsystem parameter if DNR is running in
a separate address space from the applications, otherwise,
specify an asterisk (*).

 Default: the currently active Unicenter TCPaccess
subsystem.

LOCAL Specifies no domain name servers used.

dnrtime Specifies the maximum wait time, in seconds, that a
Unicenter TCPaccess subtask waits for the domain name
resolver to obtain directory information from the domain
name server in your network.

Default: (* LOCAL)

GREETING (YES | NO | APPL)

Specifies if the Server TELNET banner messages are sent to the client.

If NO is specified, only the message Enter command or Help is sent to the client.

APPL returns a message on exit from an application.

Default: YES.

8–2 Customization Guide

GLOBAL Parameters (APPCFGxx)

JES (jestype jesname jeslu jessubsyschar)

Specifies the job entry system used, and these optional pieces of data: the JES
type, the JES subsystem name, a JES VTAM LU name, or a different JES
subsystem command identification character

jestype A one character specification for JES2 or JES3 and is given
as either 2 or 3.

 Default: 2.

jesname (JES subsystem name) is specified as four characters.

 Default: JES2 for JES2 or JES3 for JES3.

jeslu (ES VTAM LU name) is eight characters.

 Default: First parameter; JES2 for JES2 or JES3 for JES.

jussubsyschar One character.

 Default: Subsystem communication character is $ for JES2
or * for JES3.

LUPARM (luparm | NONE)

Specifies the member name of the LU pool configuration member. Specifying
NONE turns off LU pool support for Server TELNET.

Default: APPLUP00.

MIGVOL (volser) Specifies the volser, such as HSM, used by your storage management software
for migrated data sets.

Default: MIGRAT.

RTMSSID (rtm_ssid) Specifies the subsystem ID for the RTM Data Space. This parameter should be
specified only if the RTM Data Space is used. If the Data Space resides in the
same address space, specify an asterisk (*).

Default: None.

Global Application Parameters 8–3

GLOBAL Parameters (APPCFGxx)

SMS | NOSMS Specifies that SMS is to control allocation of new data sets.

If SMS is specified:

■ Many of the default DCB allocation parameters will not be specified by
Unicenter TCPaccess

■ Be sure to verify that SMS will control allocation of data sets

If NOSMS is coded, Unicenter TCPaccess sets defaults for many of the DCB
allocation parameters.

Default: NOSMS.

SVC99WTO | NOSVC99WTO

Specifies whether to ask MVS to produce additional diagnostic WTO messages
when processing an SVC99 (dynamic allocation) request. This can be useful in
diagnosing allocation problems.

Default: NOSVC99WTO.

TRANTBL (tablename) Specifies the translate table load module to that the control connection for the
service will use. The tablename can be one of the following:

ENGLISH
DANISH
FCANADA
FRENCH
GERMAN
GSWISS
ITALIAN
SPANISH
SWEDISH

Default: Translate table specified by TRANTBL parameter on TELNET statement
in TCPCFGxx configuration member. If no parameter is specified, ENGLISH is
used

8–4 Customization Guide

GLOBAL Parameters (APPCFGxx)

Examples

This example is typical for an installation with minimal changes from the sample.
SVC99 debugging is enabled.
GLOBAL ACBNAME(A03ACCA)
 API(*)
 DNR(* 30)
 GREETING(YES)
 JES(2 JES2 JES2 $)
 LUPARM(APPLUP00)
 MIGVOL(MIGRAT)
 SVC99WTO
 TRANTBL(ENGLISH)

This example shows the applications and DNR running in the current address
space, and the TCP stack running in a separate address space with a subsystem
ID of TCP1.
GLOBAL ACBNAME(A03ACCA)
 API(TCP1)
 DNR(* 30)
 SVC99WTO

Global Application Parameters 8–5

Chapter

9 Telnet Configuration

The TELNET statement defines default characteristics for the APPL statements,
and can also act as a generic APPL statement. A TELNET statement must precede
all APPL statements.

This chapter provides guidelines for using Unicenter TCPaccess Telnet Server to
configure Telnet and TN3270 for your site. The topics covered in this chapter
include:

■ Telnet Configuration Options—Describes basic configuration options for
Server Telnet

■ Configuring the TN3270E Telnet Server—Describes how to configure the
TN3270E TELNET server

■ Protocol Service Segment (SERVICE)—Describes how to set up your
TELNET services and protocols

■ Error! Reference source not found.—Describes how to specify parameters
propagated for APPL statements

■ Server TELNET Application Segment (APPL)—Describes how to use the
APPL statement to define internal services within TCPaccess

■ Additional Configuration Statements for the T04STSSL Server—Describes
additional statements for configuring SSL for the TN3270E Telnet Server.

■ The LU Pool Facility—APPLUPxx Member—Describes how to assign Logical
Unit (LU) names and rules

■ LUPOOL Statement—Describes how to specify LU pools

■ LURULE Statement—Describes how to specify rules for LU pools.

■ Terminal Profile (TERMPROF)—Describes how to define site-configurable
terminal environments to be used during the terminal-type negotiation
process

■ Modifying VTAMLST Application Definitions—Describes how to change the
APPL statements in the TCPaccess application major node in
SYS1.VTAMLST

Telnet Configuration 9–1

Telnet Configuration Options

Telnet Configuration Options
You can configure Server Telnet to use either the TN3270 or TN3270E protocol to
communicate with applications. You can also configure Server Telnet to
automatically connect you to a specific application, or display a screen that
enables you to connect to an application of your choice. Use the keywords on the
SERVICE and TELNET statements to specify the connection option you prefer.

To use the TN3270E protocol, code the TN3270E keyword on the TELNET
statement (or allow it to default). The Unicenter TCPaccess Telnet Server then
attempts TN3270E negotiation with clients. If clients indicate that they do not
want to use the TN3270E protocol, Unicenter TCPaccess Telnet Server negotiates
using the old-style TN3270 protocol.

A Telnet server that supports both TN3270E and SSL can be configured. The
server runs over UNIX System Services (formerly known as OpenEdition) so
either Unicenter TCPaccess or IBM’s TCP/IP (or both) can be used to access the
server.

If you want to connect users automatically to a specific application, specify the
AUTOLOGON keyword and the name of the application. The name must be
defined in an APPL statement; for details, see Server TELNET Application
Segment (APPL). Defining AUTOLOGON causes USS table message 10 to be
bypassed. For more information about AUTOLOGON, see Protocol Service
Segment (SERVICE).

If you want to allow users to connect to an application of their choice, USS table
message 10 is displayed as a prompt for the user. You can use the default USS
table provided with Unicenter TCPaccess Telnet Server, or you can specify one of
your own using SERVICE keyword USSTAB.

You can specify:

■ Whether you want Telnet negotiation performed before or after message 10
is displayed, using SERVICE keyword START3270 or STARTNVT

■ Display whether you want the secondary LU to be acquired before or after
message 10, by coding or omitting the SERVICE keyword PRELU

For more information on USS tables, see Preparing USS Tables.

9–2 Customization Guide

Configuring the TN3270E Telnet Server

Configuring the TN3270E Telnet Server
The TN3270E Telnet server provides full support for the TN3270E protocol, as
defined by RFC2355 and extensions, including support for 3287 printers. The
TN3270E server also supports old-style TN3270 connections for clients that do not
support TN3270E, and can be configured to negotiate TN3270 by default.

To configure the TN3270E server:

1. Specify MODULE(T01S3270) on the SERVICE statement for the Server Telnet
port.

This TN3270E server is designed to:

■ Be scalable

■ Take advantage of multi-processing systems

■ Use virtual storage in an extremely efficient manner

2. Specify MODULE(T04STSSL) on the SERVICE statement for the Server
Telnet port.

 It:

■ Supports TN3270 and TN3270E

■ Supports SSL

■ Runs in a UNIX System Services environment

3. Specify NOTN3270E on the TELNET statement for the port, if you want to
have the server negotiate old-style TN3270 rather than attempting TN3270E
negotiation

Although the TN3270E server runs under the APP task group, and is configured
in the APPCFGxx member, it uses a different infrastructure from the other
servers. It is recommended (though not required) that the TN3270E server be run
in a different task from other servers, so that it can be isolated from problems in
that environment.

To do so:

2. Provide an APPLUPxx member.

Note: You can optionally provide a TERMPROF group, to provide logmode
names. Use the LM3270E parameter to provide logmode names for TN3270E
device types. The BUFFERSIZE parameter is ignored by the TN3270E server.

1. Create a new APPCFGxx member with only the GLOBAL statement, the
SERVICE statement(s) for the TN3270E server port(s), and any TELNET,
APPL, and TERMPROF statements necessary to support the server.

Telnet Configuration 9–3

Configuring the TN3270E Telnet Server

3. Add a START command to the START00 procedure to start this new task,
specifying the configuration member suffix in the CNFG() parameter.

TN3270E Usage Considerations

4. Start the RUNTCP started procedure; the TN3270E server will be initiated on
the new task.

Client Support When using the TN3270E server, you must ensure that clients are able to fully
support TN3270E.

Note: Some clients that support terminal TN3270E may not support TN3270E
printers. In addition, some clients that support TN3270E printers may not
support associated printer functions.

Device Name
Selection

With TN3270E connections, the device name is required during session
negotiation. The device name is chosen prior to the application selection.

Note: Operating TN3270 connections could fail due to an LU mismatch with
TN3270E.

LURULE
Considerations

The LU pool facility that allocates SLU names for TN3270(e) sessions, allows the
use of the telnet user's user ID, or the selected application, as criteria in the
selection of SLU names. This is done via the LURULE statement in the
APPLUPxx configuration member.

If, when selecting an SLU for a new session, an LURULE for user ID is found,
the telnet server prompts the user to login.

The TN3270E protocol introduces a problem, because the SLU selection is made a
part of the TN3270E negotiation. The Telnet Server cannot prompt users for their
user ID and password during negotiation. If a user ID LURULE is encountered
during TN3270E negotiation and the telnet user is not logged in, the TN3270E
server acquires the SLU as if the user ID were logged in and his user ID matched
the rule. When negotiation is complete, the user is prompted to login, and if his
user ID does not match the rule, the session is disconnected.

Because many clients have difficulty negotiating in and out of TN3270E, the
TN3270E server by default negotiates TN3270E before displaying the USS
message 10 (START3270), and does not attempt to negotiate down from
TN3270E. This means that the SLU must be selected by the server before an
application is chosen by the user. Any LURULE for APPLID is ignored. If the
application name must be made available to the LU pool facility, STARTNVT can
be coded on the SERVICE statement. This causes the TN3270E server to display
USS message 10 in NVT mode, before negotiating TN3270E.

9–4 Customization Guide

Configuring the TN3270E Telnet Server

WARNING! Though provided for in the protocol, some clients will not be able to
negotiate down from TN3270E to NVT mode to display USS message 10, when the user
ends a session with a PLU. Hangs and unpredictable results can occur at the client.

Telnet SSL—Secure Sockets Layer

The Telnet/SSL server provides the ability to protect Telnet connections with the
SSL (Secure Sockets Layer) protocol. The SSL protocol provides server
authentication and data integrity. When an SSL client connects to the Telnet/SSL
server, the client authenticates the server, then the client and server agree on how
to encrypt and decrypt information flowing between them. For SSL to work,
digital certificates and public/private keys must be defined and made available
to the TCP/IP server, either Unicenter TCPaccess or IBM’s TCP/IP. See SSL
Considerations for information on creating and maintaining digital certificates
and public/private keys.

SSL support is achieved by designating ports through which encrypted data will
flow. These ports are associated with one or more keyrings that contain the
authentication information (certificates and keys) required to protect the data.
See SSL Considerations for information on creating and maintaining keyrings.

To configure for SSL support, set your configuration file as you would for a non-
SSL server, but you must specify MODULE(T04STSSL) on the SERVICE
statement (see Protocol Service Segment (SERVICE)) and configure the
statements described in Additional Configuration Statements for the T04STSSL
Server.

Functions Not Supported by the TN3270E Servers

Both TN3270E servers do not support some minor functions. If these functions
are configured, they are parsed and ignored.

The following APPL statement parameters are not supported:
LOGDATA (LOCADDR, REMADDR)
OPTIONS (CNTL | 3278 | SNA | CRNL | 3767)
PASS (KEYB | NTRA)

The following commands are not supported:
NETSTAT
SYSSTAT
ACTEST
NEWS

Telnet Configuration 9–5

Protocol Service Segment (SERVICE)

Protocol Service Segment (SERVICE)
Defines user-level services and protocols that are accessible by connecting to
well-known ports. Each SERVICE statement defines a well known TCP or UDP
port. A well-known port is a TCP or UDP port number that has a value less than
4096 and represents the Higher Level Protocol (HLP) address of an associated
service that is generally standardized for the entire network. The most common
SERVICE statements are TELNET, VTAMAPPL, FTP, LPR, and USMTP/SSMTP.

Parameters specified on the SERVICE statement are propagated for all APPL
statements unless redefined on the APPL statement.

SERVICE Syntax
SERVICE NAME (service)
 MODULE (STELNET | FTPS | SSMTP | T01S3270 | USPOOL | STECHO |

 SCHARGEN | UDPSERV | SPOOL#4 | VTAMAPPL | USMTP | T04STSSL)
 PORT (number)
 [AUTOLOGON (appl)]
 [CPASSWORD | NOCPASSWORD]
 [IBUF (aaa bbb)]
 [IDLE (time)]
 [IPADDRESS (ip_address)]
 [KEEPALIVETIMER (number)]
 [OBUF (aaa bbb)]
 [POLL (time)]
 [PRELU]
 [QLISTEN (number)]
 [START3270 | STARTNVT]
 [TCP | UDP]
 [TOS (number)]
 [USSTAB (uss_tablename)]

NAME (service) Specifies the user-level service or protocol (one to eight characters); used for
display and account only. If Cluster Sysplex load balancing support is enabled,
that is, MEDIA Name (Cluster), then the service name is used by WLM
application registration as the groupname.

 Default: None.

9–6 Customization Guide

Protocol Service Segment (SERVICE)

MODULE (STELNET | FTPS | SSMTP| T01S3270 |USPOOL | STECHO | SCHARGEN | UDPSERV |
SPOOL#4 | VTAMAPPL | USMTP | T04STSSL)

 Specifies the name of the primary load module (one to eight characters) started
as the user-level protocol process (ULPP).

STELNET Provides the old style TELNET server.

FTPS Provides the FTP server.

SSMTP Provides the SMTP mail server.

T01S3270 Provides Telnet TN3270E server.

USPOOL Provides the LPR spooler server.

STECHO Provides the TCP ECHO and DISCARD server.

SCHARGEN Provides the TCP character generator server.

UDPSERV Provides the UDP ECHO, DISCARD, TIME, and character
generator server.

SPOOL#4 Provides the SMTP mail spooler.

VTAMAPPL Provides the VTAM interface.

USMTP Provides the SMTP mail sender.

T04STSSL Provides the Telnet TN32070E server with SSL and UNIX
System Services support.

Default: None.

PORT (number) Specifies the well-known port number for the ULPP (1:4095).

 For the T01S3270 and T04STSSL servers, the SERVICE statement must be unique
with respect to the port number, that is, duplicate SERVICE statements
specifying the same port are not allowed.

 Default: None.

AUTOLOGON (appl) Specifies an APPL NAME to connect to automatically. If AUTOLOGON is
specified, PRELU, START3270 and STARTNVT are ignored. See Server TELNET
Application Segment (APPL) for more information on the APPL statement.

Default: None.

Telnet Configuration 9–7

Protocol Service Segment (SERVICE)

CPASSWORD | NOCPASSWORD

Specifies whether to prompt for a user ID and password. This keyword is only
used for client services.

 Default: CPASSWORD.

IBUF (aaa bbb) If the service name is TELNET, you can use IBUF to specify the number of output
buffers as aaa, and their size as bbb.

Defaults: (1 1460)

IDLE (number) Specifies the maximum time, in minutes, an idle connection is left open. After
that amount of time the connection is closed.

Note: Specify zero to not close idle connections. The maximum time is 1439
minutes.

A TELNET connection is made for each FTP session. While the data transfer is
actually taking place, this connection is idle.

This value represents the idle time on the TELNET connection. Once a transfer
completes, it sends status information on this connection and the timer resets.

Default: 120.

IPADDRESS (ip_address)

Specifies the full internet address in standard dot notation at which the
application will listen for connections.

Note: Currently available only to the TN3270E/SSL server.

Default: 0.0.0.0 (INADDR_ANY)

KEEPALIVETIMER (number)

Specifies the time interval, in minutes for TCP keepalive packets on the control
connection.

Alias: KATIMER

Range: 0 (no keeplaive) – 1439 (1439 minutes)

Default: Zero (do not use keepalive)

9–8 Customization Guide

Protocol Service Segment (SERVICE)

OBUF (aaa bbb) If the service name is TELNET, you can use OBUF to specify the number of
output buffers as aaa, and their size as bbb.

Defaults: (4 1460).

POLL (number) Specifies the interval for sending a TELNET NO-OP command on an idle
TELNET connection. This is another mechanism for detecting broken
connections. It is useful for Server Telnet users with PCs, as no indication is sent
by the PC if it is recycled.

Specifying zero indicates NO-OPs are not sent. The maximum time is 255
minutes.

Default: Six.

PRELU Deprecated synonym for OBTAINLU (BEFORE), see the OBTAINLU keyword
description for details.

Coding the PRELU option prevents you from using the APPLID selection criteria
on the LURULE statement. The APPLID selection criteria would have to be (*)
generic for the desired LU pool. For details about the LURULE statement, see
The LU Pool Facility - APPLUPxx Member.

The use of PRELU is dependent on the following:

■ If AUTOLOGON is specified, PRELU is ignored.

■ If TN3270E is specified on the TELNET statement AND STARTNVT is
specified, PRELU is ignored. Otherwise, if the TN3270E protocol has been
negotiated, PRELU is implied.

■ If neither TN3270E nor STARTNVT is specified, the specification of PRELU
is significant.

■ If PRELU is in effect, the server acquires an SLU before USS table message 10
is displayed, and retains it for the duration of the Telnet session.

■ If PRELU is not in effect, the Telnet Server acquires a SLU only when a
VTAM application is requested, and releases it when the session with the
VTAM application is terminated.

QLISTEN (number) Specifies the number of entries to allocate in the Queued Listen Table. This value
indicates the number of unspecified (wild) listens to queue for determination as
to whether the connection should be accepted or rejected.

Default: Five.

Telnet Configuration 9–9

Protocol Service Segment (SERVICE)

START3270 | STARTNVT

It is recommended that a TELNET statement be defined for the port to provide
options, such as TERMPROF, for full-screen negotiation. If no TELNET statement
is defined, Server Telnet attempts to negotiate full-screen mode using the default
options.

If specified:

AUTOLOGON START3270 and STARTNVT are ignored.

START3270 Deprecated synonym for NEGOTIATE (BEFORE), see the
NEGOTIATE keyword description for details.

 The server negotiates the Telnet protocol with the client
before USS table message 10 is displayed.

STARTNVT Deprecated synonym for NEGOTIATE (AFTER), see the
NEGOTIATE keyword description for details.

 The server negotiates the Telnet protocol with the client
after USS table message 10 is displayed and an application
is requested.

Default: START3270 for the TN3270E server.
 STARTNVT for the original Telnet Server.

TCP | UDP Specifies the higher-level protocol module that provides the transport service for
the ULPP.

The only valid UDP service is UDPSERV.

Default: TCP.

TOS (number) Specifies the Internet protocol (IP) type of service (TOS) used in packets sent by
the high level protocols.

number The IP TypeOfService field, in decimal.

If no TOS keyword is specified on the SERVICE statement, the TypeOfService
field is filled in according to the IP statement TOS keyword.

Alias: TYPEOFSERVICE

Range: 0 - 255

Default: TOS valued defined in IP statement. See the IP Statement.

9–10 Customization Guide

Protocol Service Segment (SERVICE)

USSTAB (uss_tablename)

Specifies a particular port for Server Telnet applications to access through USS
tables. The variable uss_tablename represents the name of the table to load.

You can specify a unique USS table for each port defined. If your site requires
more than one USS table as a front-end to VTAM applications from TELNET,
you can define access to multiple tables as Server Telnet ports, each using a
different USS table. For example, this could facilitate multi-language
environments, device-dependent transactions, and could be used to enhance
security.

If the uss_tablename value is blank, the system loads the IBM default USS table
(ISTINCDT) to define commands and messages.

Telnet SERVICE Statement Usage Notes

Parameters of Note You may want to change the following parameters on the SERVICE statement
for Telnet.

IDLE The maximum time an idle Telnet session is left open, in minutes.

The maximum value is 1439.

POLL Provides a polling capability to help detect broken connections.

This is useful for Server Telnet users with PCs, as no indication is sent by the PC
if it is recycled.

AUTOLOGON Used to automatically connect the Server Telnet user to a VTAM application.

This is good for users with Session Managers. See Configuring Automatic Logon
to VTAM Applications for more information.

TOS When setting TOS, precedence bits should be set to zero. Of the next four bits,
only one should be set on in any one packet:

16 = minimum delay

 8 = maximum throughput

 4 = reliability

 2 = minimum cost

Telnet Configuration 9–11

Protocol Service Segment (SERVICE)

These should be set as follows:

■ Telnet = 16

■ FTP Control = 16, Data = 8

■ SMTP Commands = 16, Data = 8

■ DNS query = 16, zone transfer = 8

■ NNTP = 2

Note: Unicenter TCPaccess Telnet Server does not configure TOS for SNMP or
DNR queries, and NNTP is not implemented. Telnet and the FTP control
connection can be configured in the SERVICE statement; the FTP data connection
can be configured in the FTP statement; the SMTP connection can be configured
on the SERVICE command.

USSTAB Specifies a USS table to be used for Server Telnet connections on the port. This
feature is described in more detail in USS Table Support for Server TELNET.

■ The Server Telnet GREETING is not supported. For more information on
customizing the Unicenter TCPaccess Telnet Server greeting in the default
USS tables T01USS01 and T01USS02, see USS Table Customization
Requirements.

■ Support is available for the intrinsic services such as HELP and NEWS, with
the exception of QUIT/BYE/END, as well as NETSTAT, SYSSTAT, and
ACTEST. See Using NETSTAT, SYSSTAT, and ACTEST with a Full-screen
USS Table for more information on how to use these services from a full-
screen USS table display.

Configuring the API
Network Interfaces

The TELNET statements provide information to the Application Program
Interface (API) about the Transport Control Program (TCP), User Data Protocol
(UDP) transport services, and direct IP Interface (RAW) mode.

CAUTION! Make changes to these values only with the help of Customer Support.

If you are using Unicenter TCPaccess UNIX System Services converged socket
support, see the C/Socket Programmer’s Reference for more information.

9–12 Customization Guide

Protocol Service Segment (SERVICE)

SERVICE Examples

These examples show the use of the SERVICE statement for Telnet:

Standard Server Telnet (Port 23)
SERVICE NAME (TELNET)
MODULE (T01S3270)
PORT (23)
QLISTEN (100)

Server Telnet for TSO Full-Screen Logon (Port 1023)
SERVICE NAME (TELNET)
MODULE (T01S3270)
AUTO (TSO)
PORT (1023)
QLISTEN (50)

User TELNET for VTAM Application (Remote Port 23)
SERVICE NAME (CTELNET)
MODULE (VTAMAPPL)
PORT (23)
TCP
QLISTEN (125)

Standard Server FTP (Port 21)
SERVICE NAME (FTP)
MODULE (FTPS)
PORT (21)
TCP

Server SMTP (Port 25)
SERVICE NAME(SMTP)
MODULE(SSMTP)
PORT(25)
TCP

Line Printer Service (Port 515)
SERVICE NAME(LPR)
MODULE(USPOOL)
PORT(515)
TCP

Note: Remove or comment out the SERVICE statement for LPR when you are
using EPS to process print requests.

USS Table Port for Server Telnet
SERVICE NAME(TELNET)
MODULE(T01S3270)
PORT(1123)
USSTAB(SNATABLE)
PRELU

Telnet Configuration 9–13

Protocol Service Segment (SERVICE)

TCP Echo Service (Port 7)
SERVICE NAME (TCPECHO)
MODULE (STECHO)
PORT (7)
TCP

TCP Discard Service (Port 9)
SERVICE NAME (TCPDISC)
MODULE (STECHO)
PORT (9)
TCP

TCP Character Generator (Port 19)
SERVICE NAME (TCPCGEN)
MODULE (SCHARGEN)
PORT (19)
TCP

UDP Echo Service (Port 7)
SERVICE NAME (UDPECHO)
MODULE (UPDSERV)
PORT (7)
UDP

UDP Discard Service (Port 9)
SERVICE NAME (UDPDISC)
MODULE (UDPSERV)
PORT (9)
UDP

UDP Date and Time Service (Port 13)
SERVICE NAME (UDPTIME)
MODULE (UDPSERV)
PORT (13)
UDP

UDP Character Generator (Port 19)
SERVICE NAME (UDPCGEN)

MODULE (UDPSERV)
PORT (19)
UDP

To automatically log on to an application (SIMWARE) you can use this
combination of SERVICE and APPL statements:
SERVICE NAME (SIM)
MODULE (T01S3270)
AUTOLOGON (SIMWARE)
PORT (1025)
IDLE (0)
APPL NAME (SIMWARE)
APPLID (SIM3278)
PORT (1025)

9–14 Customization Guide

Protocol Service Segment (SERVICE)

SERVICE Statement Example

The following example gives SERVICE statements for several applications.
SERVICE NAME (TELNET) MODULE(T01S3270) PORT(23) IDLE(480)
SERVICE NAME (TELNET) MODULE(T04STSSL) PORT(2103)
SERVICE NAME (VTAMAPPL) MODULE(VTAMAPPL) PORT(23) NOCPASSWORD
SERVICE NAME (TELNET) MODULE(STELNET) PORT(1023) AUTO(TSO) IDLE(480)
SERVICE NAME (FTP) MODULE(FTPS) PORT(21) IDLE(300)
SERVICE NAME (LPR) MODULE(USPOOL) PORT(515)
SERVICE NAME (LPR) MODULE(USPOOL) PORT(516)
SERVICE NAME (UDPE) MODULE(UDPSERV) PORT(7) UDP
SERVICE NAME (UDPC) MODULE(UDPSERV) PORT(9) UDP
* SERVICE NAME (USMTP) MODULE(USMTP) PORT(25)
* SERVICE NAME (SSMTP) MODULE(SSMTP) PORT(25)
* SERVICE NAME (SPOOL#4) MODULE(SPOOL#4) PORT(25)

Telnet Configuration 9–15

The TELNET Statement

The TELNET Statement
Defines default characteristics for the APPL statements and can also act as a
generic APPL statement. Parameters specified here, except for PORT, are
propagated for all APPL statements unless redefined on the APPL statement.

TELNET Statement Syntax
TELNET [FUNCTIONS (BIND, DSCTL, RESPONSE, SCSCTL, SYSREQ, CONTRES, FMH,
 SNASENSE, NOHDRDBL)]

 [DEFAULT]
 [DYNAMIC | STATIC]

 [NEGOTIATE (BEFORE | AFTER)]
 [OBTAINLU (BEFORE | AFTER)]

 [PASS (APPL | DATA | KEYB | NONE | NTRA)]
 [PORT (number)] [PORT (number)]

 [TERMPROF (terminal_group)]
 [TRANTBL (tranname)]

 Specifies the functions that the server attempts to negotiate for new tn3270E
sessions.

This parameter applies to TN3270E server only.

DSCTL DATA-STREAM-CTL

RESPONSE RESPONSES

SYSREQ SYSREQ

CONTRES CONTENTION-RESOLUTION

 [TN3270E | NOTN3270E]

 [OPTIONS (CNTL | 3278 | SNA | CRNL | 3767)]

 [RTM (IP | SNA | NO)]

FUNCTIONS(BIND, DSCTL, RESPONSE, SCSCTL, SYSREQ, CONTRES, FMH, SNASENSE,
NOHDRDBL)

The functions are defined in RFC2355 and its extensions. They are configured as
follows:

SCSCTL SCS-CTL-CODES

FMH FMH-SUPPORT

SNASENSE SNA-SENSE

NOHDRDBL SUPPRESS-HEADER-BYTE- DOUBLING

Default: All functions are supported and the server attempts to negotiate any
that apply to the session type.

9–16 Customization Guide

The TELNET Statement

DEFAULT Indicates this statement should be treated as a generic APPL statement. With this
in effect, if the service name entered by the user does not match any of the APPL
NAMEs it is used as a VTAM APPLID and a connection is attempted to that
APPLID.

If DEFAULT is not used, the response is “Unknown Command”.

Note: Make sure that you specify it only once, either on the TELNET statement
or an APPL statement.

DYNAMIC | STATIC Dynamic buffering uses TCP's MBUF pools MB1 through MBA. These pools are
normally tuned using POOLDEF statements in the TCPCFG00 configuration
member.

When the APP task group executes in an address space different from the
address space containing the TCP task group, these pools can be tuned by
adding POOLDEF statements for pools MB1 through MBA to the APPCFG00
configuration member. You are encouraged to check pool usage using the POOL
command and tune the MBUF pools to prevent excessive expansion and
contractions of pools.

This parameter can also be coded on the APPL statement in APPCFGxx.

Default: DYNAMIC.

If you want to use this default APPL capability but do not want to use the
characteristics specified in the TELNET statement, you can associate the
DEFAULT parameter with an APPL statement that contains the desired
characteristics.

To turn off dynamic buffering, code: STATIC.

Telnet Configuration 9–17

The TELNET Statement

TN3270E | NOTN3270E

If this TELNET statement is associated with the old-style Telnet Server, TN3270E
and NOTN3270E are ignored.

If TN3270E is in effect, that is, MODULE(T01S3270) or MODULE(T014STSSL) is
specified on the SERVICE statement, the Telnet Server attempts TN3270E
negotiation. If this negotiation fails, the server then attempts TN3270 negotiation.

If TN3270E is not in effect, the server attempts only TN3270 negotiation.

Note: This parameter is ignored for the old-style TN3270 server.

NEGOTIATE (BEFORE | AFTER)

Specifies whether the Telnet Server should negotiate full-screen mode before or
after displaying the greeting message or USS table message 10.

NEGOTIATE AFTER
A synonym of SERVICE keyword STARTNVT.

The TELNET NEGOTIATE keyword overrides any specification of SERVICE
START3270 or STARTNVT, which are deprecated.

Note: Computer Associates recommends that you use the TELNET NEGOTIATE
keyword instead of START3270 or STARTNVT.

Specifies whether the server should attempt to negotiate TN3270E, or use old-
style TN3270 instead (NOTN3270E).

Default: TN3270E is the default for the new Telnet Server.

NEGOTIATE BEFORE
A synonym of SERVICE keyword START3270.

Default: NEGOTIATE (BEFORE).

9–18 Customization Guide

The TELNET Statement

OBTAINLU (BEFORE | AFTER)

Specifies whether the Telnet Server should get the secondary LU before or after
displaying the greeting message or USS table message 10.

BEFORE is a synonym of SERVICE keyword PRELU.

■ The TELNET OBTAINLU keyword overrides any specification of SERVICE
PRELU; that keyword is deprecated.

■ Computer Associates recommends that you use the TELNET OBTAINLU keyword
instead of SERVICE PRELU.

Default: None.

Specifies a combination of service options:

CNTL Pass through ASCII control characters.

3278 Attempt to negotiate full-screen mode.

CRNL Pass CR as new line character to local application.

3767 Attempt to negotiate line mode.

Default: 3278.

Specifies how data is passed to the application:

APPL Pass the APPL from the command line

DATA Pass the DATA from the command line

KEYB Prevents keyboard lockup due to Handle End Bracket
(HEB) sent by Telnet LUs using SNA sessions. Specifying
this parameter ensures that the reset keyboard bit is on in
the data stream.

Note:

OPTIONS (CNTL | 3278 | SNA |CRNL | 3767)]

SNA Use SNA 3270 command codes.

PASS (APPL | DATA | KEYB | NONE |NTRA)

NONE Pass no data to the application.

Telnet Configuration 9–19

The TELNET Statement

NTRA Convert SNA command codes to either SNA or NON-SNA.
This parameter is used with the SNA option of the
OPTIONS parameter. See the description of the OPTIONS
parameter for more information.

 Default: No translation.

Default: DATA.

PORT (number) Specifies the well-known port number (1:4095) to pass to the application.

Default: 23.

RTM (IP | SNA | NO)

Specifies the response time metrics gathered by the TN3270E server.

SNA Indicates that SNA response times should be measured.

NO Means that no response times will be measured.

Note: IP response times are only measured if RESPONSES is successfully
negotiated with the client.

This parameter applies to TN3270E server only.

TERMPROF (terminal_group)

Specifies the terminal group name that must be defined on a TERMPROF
statement.

Default: None; this must be specified.

If more than one TELNET statement is configured, each one must have a
different value for the PORT parameter.

IP Indicates that IP response times should be measured.

Default: SNA.

9–20 Customization Guide

The TELNET Statement

TRANTBL (tranname) Specifies the translate table load module to be used by TELNET applications
unless overridden by specifications on an APPL statement.

The tranname can be one of the following:

ENGLISH

DANISH

FCANADA

GERMAN

GSWISS

ITALIAN

SWEDISH

 For more information on special translate tables, see the chapter “Translation
Tables.”

Default: Translate table specified by TRANTBL parameter on GLOBAL
statement in APPCFGxx configuration member.

FRENCH

SPANISH

Telnet Configuration 9–21

The TELNET Statement

Usage Notes

Parameters of Note You may need to change the following parameters for the TELNET statement:

DEFAULT Indicates this statement is to be treated as a generic APPL statement. This allows
a user to enter any VTAM applied in response to the Server Telnet prompt

USSTAB Specifies a USS table to be used for server TELNET connections on the port. See
USS Table Support for Server TELNET for more information.

■ Other Telnet ports for non-USS Tables applications

Also, if you have used the API for Unicenter TCPaccess Telnet Server to create
custom applications, make sure not to assign a port number for a USS Tables
facility that conflicts with a port number assigned to API programs.

TELNET Statement
Usage

The TELNET entry, if specified, must precede all other APPL statements.

Any APPL parameter, with the exception of APPLID and NAME, can be
specified on the TELNET statement. In addition, the TELNET statement also
can contain the DEFAULT parameter to identify it as the default service
described in the table.

Using the PORT
Parameter

The PORT parameter can match the TELNET statement to any APPL statement
or statements to which defaults are applied. If a port other than 23 is defined,
you must configure a PORT parameter with the same value for any APPL
statement or statements to which this TELNET statement applies.

If more than one TELNET statement is configured, each one must have a
different value for the PORT parameter. In addition, the TELNET PORT value
must always match the SERVICE PORT value.

Using the
OPTIONS(SNA)
Parameter

The OPTIONS(SNA) parameter on the APPL or TELNET statement has nothing
to do with whether or not LU2 support is invoked. This parameter causes the
command code (first byte in any 3270 outbound data stream) to be translated to
an SNA command code. Because some applications may not be cognizant of the
fact that they are communicating with an SNA partner. It is a good idea,
however, to specify this parameter for SNA-designated applications just to
make sure the client software does not get confused.

Using USS Table
Support

If your site uses the USS Table support in Unicenter TCPaccess Telnet Server,
note that more than one TELNET statement can be specified for usage with USS
Tables, to allocate:

■ More than one port for USS Tables usage

9–22 Customization Guide

Server Telnet Application Segment (APPL)

TELNET Examples

These are examples for TELNET statements for use with USS Tables:

 PASS (DATA)
 DEFAULT
TELNET PORT (1023)
 TN3270E

 OPTIONS (SNA)
 PASS (DATA)
TELNET PORT (1124)
 OPTIONS (3278)

For more information, see the “Client/Server Telnet” chapter of the User Guide.

Server Telnet Application Segment (APPL)
Defines internal services within Unicenter TCPaccess Telnet Server. While it is
not required to code APPL statements for the USS table facility, you must code
APPL configuration statements for all non-USS table access to applications.

Note: The following APPL statement parameters are not supported by TN3270E
server.

LOGDATA(LOCADDR,REMADDR)
OPTIONS(CNTL|3278|SNA|CRNL|3767)
PASS(KEYB|NTRA)

APPL NAME (service)
 [APPLID (application_ID)]
 [CHARS(number)]

 [LOGDATA (LOCADDR, REMADDR)]
 [OPTIONS (CNTL | 3278 | SNA | CRNL | 3767)]
 [PASS (APPL | DATA | KEYB | NONE | NTRA)]
 [PORT (number)]

 [TERMPROF (terminal_group)]
 [TRANTBL (tranname)]

NAME (service) Specifies a command name (one to eight characters) entered at the TELNET
prompt as service names or synonyms.

Note: Do not use LOGON as a service name, as it has a special meaning to TSO.

TELNET PORT (23)

TELNET PORT (1123)

 PASS (DATA)

TELNET APPL Syntax

 [DEFAULT]

 [SECURITY (NO | YES | name)]

Default: None.

Telnet Configuration 9–23

Server Telnet Application Segment (APPL)

APPLID (application_ID)

Specifies the VTAM application network (LU) name (one- to eight- characters) if
the service is a VTAM application (for example, TSO LOGON).

The name specified must match the label of the VTAMLST APPL statement for
the specified application.

Default: None.

Note: If DEFAULT is specified, APPLID is not valid.

CHARS (number) Specifies the minimum number of characters of the service name that invokes the
service.

Default: Length of the service name.

DEFAULT Use this statement as the default APPL statement. With this in effect, if the
service name entered by the user does not match any of the APPL NAMEs, it is
used as a VTAM APPLID and a connection is attempted using the parameters
specified in the APPL statement.

LOGDATA (LOCADDR, REMADDR)

Specifies that the local and remote protocol addresses are passed to VTAM
application during initialization of the VTAM session. The actual remote and/or
local addresses are passed to the application in the CINIT VTAM RU.

Both parameters do not need to be coded. In addition, LOGDATA forces
PASS(DATA) to be activated.

Default: None.

9–24 Customization Guide

Server Telnet Application Segment (APPL)

OPTIONS (CNTL | 3278 | SNA | CRNL | 3767)

Specifies a combination of service options:

CNTL Pass through ASCII control characters.

3278 Attempt to negotiate full-screen mode.

SNA Use SNA 3270 command codes. This option is only in effect
if NTRA is coded on the PASS parameter. These options
are used if the remote TN3270 client needs to receive either
SNA 3270 command codes or NON-SNA 3270 command
codes.

 The default is for Unicenter TCPaccess Telnet Server to be
transparent and pass through all 3270 command codes.
However, some TN3270 clients need translation to work
correctly. For example, if NTRA is coded and SNA is not
coded, all 3270 command codes are converted to NON-
SNA command codes. If both SNA and NTRA are coded,
all 3270 command codes are converted to SNA command
codes.

 Default: TRANSPARENT (no translation)

CRNL Pass CR as new line character to local application.

3767 Attempt to negotiate line mode.

Default: 3278

Telnet Configuration 9–25

Server Telnet Application Segment (APPL)

PASS (APPL | DATA | KEYB | NONE | NTRA)

Specifies how data is passed to the application:

APPL Pass the APPL from the command line.

DATA Pass the data from the command line.

KEYB Prevents keyboard lockup due to Handle End Bracket
(HEB) sent by Telnet LUs using SNA sessions. Specifying
this parameter ensures that the reset keyboard bit is on in
the data stream.

NONE Do not pass data to the application.

NTRA Convert SNA command codes to either SNA or NON-SNA.
This parameter is used with the SNA option of the
OPTIONS parameter. See the description of the OPTIONS
parameter for more information.

 Default: No translation.

Default: DATA

PORT (number) Specifies the well-known port number (1:4095) passed to the application.

Default: 23.

SECURITY (NO | YES | name) Specifies whether command security checking will be done.

NO Do not do command security checking for this command.

YES Do command security checking using the service NAME as
the resource name.

name Do security checking on service name.

Command security resource profiles must be defined to the security system
before this parameter can be used. See the Unicenter TCPaccess Telnet Server
System Management Guide for details.

Default: For SYSSTAT and ACTEST the default (name) is SYSTRAN.
 For others, the default is NO.

9–26 Customization Guide

Server Telnet Application Segment (APPL)

TERMPROF (terminal_group)

Specifies the terminal group name that must be defined on a TERMPROF
statement.

Default: None; this must be specified.

TRANTBL (tranname) Specifies the translate table load module that the control connection for the
service will use.

The tranname can be one of the following:

ENGLISH

DANISH

FCANADA

FRENCH

GERMAN

GSWISS

ITALIAN

SPANISH

SWEDISH

Default: Translate table specified by TRANTBL parameter on TELNET statement
in TCPCFGxx configuration member. If no parameter is specified, ENGLISH is
used.

Note: The intrinsic services BYE, END, CLOSE, QUIT, HELP, NEWS, LOGIN,
SIGNON, LOGOUT, and SIGNOFF are defined internally and APPL statements
are not required. For compatibility, APPL statements may be defined for any of
these services. Only the CHARS and SECURITY parameters are used; all other
parameters are ignored.

Telnet Configuration 9–27

Server Telnet Application Segment (APPL)

TELNET APPL Statement Usage Notes

TELNET APPL
Statements of Note

Create additional APPL statements to account for all the applications to which
you have access, or use the DEFAULT option.

DEFAULT requires that you know the VTAM APPLID of the application to
which you want to connect.

You may need to change these parameters on the APPL statement:

NAME When prompted by Server Telnet , enter the name by
which you want to identify the service.

APPLID Enter the valid VTAM APPLID of the application you wish
to access.

OPTIONS Defines the terminal type used with TERMPROF definition.
If using LU2, specify SNA or SNA command codes.

TERMPROF Specifies terminal group profile; must be defined with
TERMPROF statement. An asterisk (*) means use the first
TERMPROF defined.

Review the use of TERMPROF with APPL statements. APPL and TERMPROF
statements do not depend on each other for specific placement in the
configuration stream.

Note: A TELNET statement, if specified, must precede all APPL statements.

APPL Statements
Description

APPL NAME (NETSTA) CHARS (3)
APPL NAME (SYSSTAT) CHARS (3) TRANTBL (ENGLISH)
APPL NAME (ACTEST)
APPL NAME (ACCES) APPLID (A03ACCA PASS (DATA) TRANTBL (ENGLISH)
APPL NAME (LOGON) APPLID (TSO) PASS (DATA)
APPL NAME (TSO) APPLID (TSO) PASS (DATA) PORT (1023)
APPL NAME (SIM) APPLID (SIM3278) PASS (DATA)
APPL NAME (SIM3278) APPLID (SIM3278) PASS (APPL DATA)
APPL NAME (TSO) APPLID (A02TSO) PORT (23)
OPTIONS (3278 SNA) TERMPROF (T3278GRP)
APPL NAME (CICS) APPLID (A02CICSP) PORT (27)
OPTIONS (3278 SNA) TERMPROF (T3279GRP)

9–28 Customization Guide

Server Telnet Application Segment (APPL)

APPL Examples

These examples show the usage of the APPL statement:

Standard Telnet Port,
Using the TN3270E
Server

SERVICE NAME(TN3270E) MODULE(T01S3270) PORT(23)
POLL(0) IDLE(0)

The New TN3270E
Server Using the Old
TN3270 Protocol

SERVICE NAME(TN3270E) MODULE(T01S3270) PORT(1123)
 POLL(0) IDLE(0)
TELNET PORT(1123) PASS(DATA) NOTN3270E

Application
Subsystems
Accessible Through
VTAM

APPLNAME (LOGON)
APPLID (A06TSO)
PASS (DATA)
APPLNAME (TSO)
APPLID (A06TSO)
PASS (DATA)
APPLNAME (TSO)
APPLID (A06TSO)
PORT (1023)
APPLNAME (CICS)
APPLID (A06CICS)
PASS (DATA)
APPLNAME (IMS)
APPLID (A06IMS)
PASS (DATA)
APPLNAME (SIM3767)
APPLID (SIM3278)
OPTIONS (3278 CNTL)
APPLNAME (SIM3278)
APPLID (SIM3278)
OPTIONS (3278 CNTL)
APPLNAME (APL)
APPLID (A06TSO)
APPLNAME (WYLBUR)
APPLID (WYL)

Test and
Miscellaneous
Services

APPLNAME (ACCES)
APPLID (ACCES)
PASS (DATA)

TERMPROF Usage APPLNAME (TSO)
APPLID (A02TSO)
PORT (23)
OPTIONS (3278)
TERMPROF (T3279GRP)

Telnet Configuration 9–29

Additional Configuration Statements for the T04STSSL Server

Support for ASCII Terminals and Other Clients Without TN3270
APPLNAME (TSOSIM)
SIMPCS (TNSIMPHI)
APPLID (A06TSO)
PASS (DATA)

Note: Using Unicenter TCPaccess Telnet Server with ASCII terminals requires
the separate installation of the Sim3278 TCP/IP software.

Access to Applications on Systems Not Using USS Tables
APPL NAME (NETSTAT)
CHARS (3)
PORT (23)
APPL NAME (SYSSTAT)
CHARS (3)
PORT (23)
APPL NAME (ACTEST)
PORT (23)

Additional Configuration Statements for the T04STSSL Server
In addition to the T04STSSL module and IP address specifications on the
SERVICE statement, the following statements provide further configuration
information.

Please refer to the Appendix “SSL Considerations” for additional system
information.

TNGLOBAL Statement

Can be used to qualify the TCPaccess stack in a Common INET (CINET)
environment. Only one TNGLOBAL statement is permitted in the APPCFG xx
configuration member.

Note: The TNGLOBAL statement is optional. If the TNGLOBAL statement is
not coded, the SERVICE statements with MODULE(T04STSSL) will listen to ALL
active CINET stacks.

9–30 Customization Guide

Additional Configuration Statements for the T04STSSL Server

TNGLOBALStatement Syntax
TNGLOBAL PROVIDER (name)

PROVIDER (name) Specifies a one- to eight-character CINET provider name that allows applications
to be associated with specific stacks in the CINET.

For example, if TCPACC01 and TCPACC02 were in the CINET and both were
active, specifying PROVIDER(TCPACC02) would allow connections through
TCPACC02 only.

By default, any stack within CINET may provide services.

TNNONSSL Statement

Establishes worker task allocation settings for non-SSL ports. Only one
TNNONSSL statement is permitted in the APPCFGxx configuration member.

Note: The TNNONSSL statement is optional

TNNONSSL Statement Syntax
TNNONSSL MAXSESSTASK (number)
 MAXTASKS (number)
 MINTASKS (number)

MAXSESSTASK (number)

Specifies the maximum number of sessions that any non-SSL telnet server
worker task can support.

Range: 1 - 65,280.

Default: 8,192.

MAXTASKS (number) Specifies the maximum number of worker tasks to allocate for non-SSL sessions.
If zero is specified, the number of worker tasks is unlimited and the non-SSL
telnet server allocates as many worker tasks as it needs to service a given telnet
connection.

Note: A non-zero value limits the maximum number of non-SSL sessions that
can be concurrently managed:

(MAXTASKS * MAXSESSTASK = maximum number of sessions).

Range: 0 – 100.

Default: Zero (unlimited).

Telnet Configuration 9–31

Additional Configuration Statements for the T04STSSL Server

MINTASKS (number) Specifies the minimum number of worker tasks to allocate for non-SSL sessions.

Range: 1 - 100.

Default: One.

 KEYRING Statement

KEYRING defines an SSL keyring profile. One or more KEYRING statements are
required to enable SSL connections.

 KEYRING Statement Syntax
KEYRING NAME (profile_name)
 [SAFNAME (ringname) | HFSKDB (kdbpath) HFSSTASH (sthpath)]
 HANDSHAKETIMEOUT (seconds)
 IOTIMEOUT (seconds)
 MAXSESSTASK (number)
 MAXTASKS (number)
 MINTASKS (number)
 V2ENCRYPTION (cipher_type1 cipher_type2 ... cipher_type10)
 V3ENCRYPTION (cipher_type1 cipher_type2 ... cipher_type10)

NAME (profile_name)

Specifies the one- to eight- character name of the keyring profile. NAME is
required. This is the name referenced in TNSSL statements associated with this
keyring.

Default: None.

[SAFNAME (ringname) | HFSKDB (kdbpath) HFSSTASH (sthpath)]

Specifies the name of the keyring database (KDB). This can be either a keyring
created via SAF, or a pair of HFS-defined pathnames.

SAFNAME or an HFS/pathname pair
(Required). SAFNAME is mutually exclusive with
HFSKDB/HFSSTASH.

SAFNAME(ringname)
Name of the keyring created via the SAF create keyring
function.

 SAFNAME can be up to 237 characters.

9–32 Customization Guide

Additional Configuration Statements for the T04STSSL Server

HFSKDB(kdbpath) HFSSTASH(sthpath)
Pathnames of an HFS-defined KDB file and its associated
stash (password) file. Although HFS pathnames can
normally be up to 1023 characters, due to parsing
constraints, HFSKDB and HFSSTASH pathnames cannot
exceed 255 characters.

 Refer to SSL Considerations for guidelines on keyring and
KDB management.

Default: None.

HANDSHAKETIMEOUT (seconds)

Specifies the maximum amount of time the SSL server waits for the start of the
SSL handshake initiated by the client. The connection request is aborted if the
handshake is not received within this time. This specification is designed to
prevent tying up an SSL port if a non-SSL client mistakenly connects to an SSL
port.

 Specify a value between 1 and 60. If zero is specified, the SSL server waits
indefinitely for the handshake start.

Default: Five.

IOTIMEOUT (seconds) Specifies the maximum amount of time the SSL server waits for an I/O operation
to complete during handshake processing. When the SSL server starts a
handshake I/O operation on behalf of a session, the worker task (TCB)
associated with the session is suspended until the I/O operation completes.
When a worker task is suspended, ALL sessions assigned to it are also
suspended. If an I/O operation does not complete within this time, the session
on whose behalf the I/O operation was issued is terminated. All other sessions
are unaffected.

Range: 1 - 15.

Default: Five.

MAXSESSTASK (number)

Specifies the maximum number of sessions that any SSL server worker task can
support.

Range: 1 - 65,280.

Default: 8,192.

Telnet Configuration 9–33

Additional Configuration Statements for the T04STSSL Server

MAXTASKS (number) Specifies the maximum number of worker tasks allocated to this keyring. If zero
is specified, the number of worker tasks is unlimited and the SSL server allocates
as many worker tasks as needed to service a given SSL connection.

Note: A non-zero value limits the maximum number of sessions that can be
concurrently managed on the keyring

(MAXTASKS * MAXSESSTASK = maximum number of sessions).

Range: 0 - 100.

Default: Zero (unlimited).

MINTASKS (number) Specifies the minimum number of worker tasks allocated to this keyring.

Range: 1 – 100.

Default: One.

V2ENCRYPTION (cipher_type1 cipher_type2 ... cipher_type10)

Specifies a subset of the supported SSL/V2 encryption methods to use on this
port.

Specify one or more of the following SSL/V2 cipher types:

RC4

RC4_EX

RC2

RC2_EX

DES

3DES

Default: Full set of encryption methods.

Note: See Note in V3ENCRYPTION description.

9–34 Customization Guide

Additional Configuration Statements for the T04STSSL Server

V3ENCRYPTION (cipher_type1 cipher_type2 ... cipher_type10)

Specifies a subset of the supported SSL/V3 encryption methods used on this
port.

Specify one or more of the following SSL/V3 cipher types:

NULL_MD5

NULL_SHA

 RC4_MD5_EX

RC4_MD5

RC4_SHA

RC2_MD5_EX

DES_SHA

3DES_SHA

Note:
■ Both V2ENCRYPTION and V3ENCRYPTION can be specified

■ A maximum of 10 cipher types per version can be specified

■ The actual encryption method used for a given connection is negotiated
during the SSL connection handshake

– If omitted, no encryption specifications are propagated to corresponding
TNSSL statements

– If encryption cannot be determined from any source, the SSL server
supports all encryption methods available for the level of SSL installed
on the operating system

– Encryption cipher types should be listed in order of preference

■ If VxENCRYPTION is specified on a KEYRING statement, it sets the
encryption methodology used for all ports associated with the keyring. If
VxENCRYPTION is specified on a TNSSL statement, it applies only to the
port defined in the TNSSL statement, and supercedes encryption settings on
the port’s corresponding keyring statement.

■ ENCRYPTION can be used as an alias only for V3ENCRYPTION.

Default: Full set of encryption methods.

Telnet Configuration 9–35

Additional Configuration Statements for the T04STSSL Server

TNSSL Statement

TNSSL defines a port to use for SSL connections. One or more TNSSL statements
are required to enable SSL support. The TNSSL port must match a port in a
SERVICE statement. The presence of a TNSSL statement commits its
corresponding SERVICE port to SSL connections only.
TNSSLNAME KEYRING (profile_name)
 PORT (portnum)
 V2ENCRYPTION(cipher_type1 cipher_type2 ... cipher_type10)
 V3ENCRYPTION(cipher_type1 cipher_type2 ... cipher_type10)

TNSSL Statement Syntax

KEYRING (profile_name)

Specifies the one-to eight- character name of the KEYRING profile to associate
with this port. KEYRING is required.

Default: None.

PORT (portnum) (Required). Specifies a port number to use for SSL connections.

Note: This value must match a corresponding port in a SERVICE statement and
must be unique among all TNSSL statements.

Default: None.

V2ENCRYPTION(cipher_type1 cipher_type2 ... cipher_type10)

Specifies a subset of the supported SSL/V2 encryption methods to use on this
port.

Specify one or more of the following SSL/V2 cipher types:

RC4

RC4_EX

RC2

RC2_EX

DES

3DES

Default: Full set of encryption methods.

Note: See Note in V3ENCRYPTION description below.

9–36 Customization Guide

Additional Configuration Statements for the T04STSSL Server

V3ENCRYPTION(cipher_type1 cipher_type2 ... cipher_type10)

Specifies that a subset of the supported SSL/V3 encryption methods will be used
on this port. Specify one or more of the following SSL/V3 cipher types:

NULL_MD5

NULL_SHA

RC4_MD5_EX

RC4_MD5

RC4_SHA

RC2_MD5_EX

DES_SHA

3DES_SHA

Default: Full set of encryption methods.

Note:
■ Both V2ENCRYPTION and V3ENCRYPTION can be specified

■ A maximum of 10 cipher types per version can be specified

■ The actual encryption method used for a given connection is negotiated
during the SSL connection handshake

– If omitted, encryption specifications are obtained from the port’s
associative KEYRING profile

– If encryption cannot be determined from any source, the SSL server
supports all encryption methods available for the level of SSL installed
on the operating system

– Encryption cipher types should be listed in order of preference

■ If VxENCRYPTION is specified on a KEYRING statement, it sets the
encryption methodology used for all ports associated with the keyring. If
VxENCRYPTION is specified on a TNSSL statement, it applies only to the
port defined in the TNSSL statement, and supercedes encryption settings on
the port’s corresponding keyring statement.

■ ENCRYPTION can be used as an alias only for V3ENCRYPTION.

Telnet Configuration 9–37

Additional Configuration Statements for the T04STSSL Server

TNSSL Usage Notes

DOMAIN and PROVIDER on the TNGLOBAL statement are conditionally
mutually exclusive. If DOMAIN(2) is defined, PROVIDER can also be specified.
Otherwise, specifying both results in a configuration error.

As noted earlier, the port number specified on a TNSSL statement must match a
port number on a SERVICE statement. In addition, the corresponding SERVICE
statement must specify MODULE(T04STSSL). Module T04STSSL supports both
SSL PORTs and non-SSL PORTs. If TNSSL is specified, the port is an SSL PORT,
otherwise it is a non-SSL port.

SSL configuration statements can be specified in any order in the APPCFGxx
member.

SSL Configuration Example
SERVICE NAME(TN3270E) MODULE(T04STSSL) PORT(1123) ...
SERVICE NAME(TN3270E) MODULE(T04STSSL) PORT(1223) ...
SERVICE NAME(TN3270E) MODULE(T04STSSL) PORT(1323) ...
SERVICE NAME(TN3270E) MODULE(T04STSSL) PORT(1423) ...
...
SERVICE NAME(TN3270ES) MODULE(T04STSSL) PORT(2004) ...
SERVICE NAME(TN3270ES) MODULE(T04STSSL) PORT(2005) ...
SERVICE NAME(TN3270ES) MODULE(T04STSSL) PORT(2006) ...
SERVICE NAME(TN3270ES) MODULE(T04STSSL) PORT(2007) ...
...
TNNONSSL MINTASKS(2)
KEYRING NAME(WTMRING1)
 HFSKDB(/u/WTM1/key.kdb)
 HFSSTASH(/u/WTM1/key.sth)
KEYRING NAME(WTMRING2)
 SAFNAME(WTMSAF.KEYRING)
 HANDSHAKETIMEOUT(20)
TNSSL PORT(2004) KEYRING(WTMRING1)
 ENCRYPTION(DES_SHA 3DES_SHA
 NULL_MD5 NULL_SHA RC4_MD5)
TNSSL PORT(2005) KEYRING(WTMRING2)
TNSSL PORT(2006) KEYRING(WTMRING1)
TNSSL PORT(2007) KEYRING(WTMRING2)

In the previous example, ports 1123, 1223, 1323, and 1423 are defined as non-SSL
ports (because there are no matching TNSSL statements).

Ports 2004-2007 are defined as SSL ports.

9–38 Customization Guide

The LU Pool Facility—APPLUPxx Member

The LU Pool Facility—APPLUPxx Member
The APPLUPxx member in the PARM data set implements the Logical Unit (LU)
pool facility. It is referenced by the HOST statement LUPARM keyword in
APPCFGxx.

This facility assigns LU names to Server TELNET users requesting access to local
VTAM applications based on a set of installation-defined rules. The LU pools
and rules are defined by member APPLUPxx. The LUPOOL statement defines
the LU pools; the LURULE statement defines the LUPOOL rules. The LUPOOL
and LURULE statements can appear anywhere within the member. Multiple
copies of Unicenter TCPaccess Telnet Server can use the same LUPARM files. For
more information on the LUPOOL statement, see LUPOOL Statement. For more
information on the LURULE statement, see LURULE Statement.

The same LUs can be used in both LUPOOL and ACCPOOL. For more
information on ACCPOOL, see Modifying VTAMLST Application Definitions.

Virtual Terminal Setup

As distributed, the APPLUP00 member contains 99 Virtual Logical Terminals
(VLTs, or LUs) and ACCPOOL contains 30 of those 99 VLTs. This means that the
VLTs assigned to ACCPOOL can also be used by Server Telnet users. While this
should not be a problem for initial installation and testing, make an evaluation
prior to production to ensure there are sufficient VLTs available for both types of
usage. You may need to eliminate the overlap or define additional VLTs in both
members.

The minimum changes you need to make for installation and testing purposes
are described here. See LU Name Pools (LUPOOL), and The LU Pool Facility—
APPLUPxx Member for more detailed information on setting up additional LU
rules and LU pools to create a more restrictive environment.

Telnet Configuration 9–39

The LU Pool Facility—APPLUPxx Member

The APPLUP00 member distributed with Unicenter TCPaccess Telnet Server is
shown below.
LUPOOL NAME (VLTPOOL)
LU (ACCVLT01,ACCVLT02,ACCVLT03,ACCVLT04,ACCVLT05,
ACCVLT06,ACCVLT07,ACCVLT08,ACCVLT09,ACCVLT10,
ACCVLT11,ACCVLT12,ACCVLT13,ACCVLT14,ACCVLT15,
ACCVLT16,ACCVLT17,ACCVLT18,ACCVLT19,ACCVLT20,
ACCVLT21,ACCVLT22,ACCVLT23,ACCVLT24,ACCVLT25,
ACCVLT26,ACCVLT27,ACCVLT28,ACCVLT29,ACCVLT30,
ACCVLT31,ACCVLT32,ACCVLT33,ACCVLT34,ACCVLT35,
ACCVLT36,ACCVLT37,ACCVLT38,ACCVLT39,ACCVLT40,
ACCVLT41,ACCVLT42,ACCVLT43,ACCVLT44,ACCVLT45,
ACCVLT46,ACCVLT47,ACCVLT48,ACCVLT49,ACCVLT50,
ACCVLT51,ACCVLT52,ACCVLT53,ACCVLT54,ACCVLT55,
ACCVLT56,ACCVLT57,ACCVLT58,ACCVLT59,ACCVLT60,
ACCVLT61,ACCVLT62,ACCVLT63,ACCVLT64,ACCVLT65,
ACCVLT66,ACCVLT67,ACCVLT68,ACCVLT69,ACCVLT70,
ACCVLT71,ACCVLT72,ACCVLT73,ACCVLT74,ACCVLT75,
ACCVLT76,ACCVLT77,ACCVLT78,ACCVLT79,ACCVLT80,
ACCVLT81,ACCVLT82,ACCVLT83,ACCVLT84,ACCVLT85,
ACCVLT86,ACCVLT87,ACCVLT88,ACCVLT89,ACCVLT90,
ACCVLT91,ACCVLT92,ACCVLT93,ACCVLT94,ACCVLT95,
ACCVLT96,ACCVLT97,ACCVLT98,ACCVLT99)
LURULE IPADDR (0.0.0.0,255.255.255.255)
PORT (*)
USER (*)
APPLID (*)
POOL (VLTPOOL)

LU Name Pools (LUPOOL)

Groups one or more LU names, into pools. The pool usage is controlled by
LURULE statements.

The LUPOOL NAME (xx) contains a pool of LU names and gives the pool a
unique name. The LU names in the pool are actually the ACBNAMEs for the
associated LUs. Normally LU name and ACBNAME are the same, but it is not a
VTAM requirement. Any number of pools can be defined. There is no limit to the
number of LU names you can define in a pool. LUPOOL statements are not
required if the LU keyword is used instead of the POOL keyword on the
LURULE statement.

See The LU Pool Facility—APPLUPxx Member for additional information and
examples about APPLUPxx.

If VTAM LU definition is:
VLT02 APPL ACBNAME=ACCVLT02, ...

The LU keyword is ACCVLT02, where LU and ACBNAME are not equivalent.

9–40 Customization Guide

The LU Pool Facility—APPLUPxx Member

Example 1 This example shows how to create an LUPOOL/LURULE combination named
CICSPOOL.

To use only LUs ACCVLT02 through ACCVLT06 for use with CICS, you can
either create an LUPOOL/LURULE combination named CICSPOOL, or use the
LU keyword of the LURULE statement.

The LUPOOL contains five LUs:
LUPOOL NAME (CICSPOOL) LU (ACCVLT02,ACCVLT03,ACCVLT04,ACCVLT05,ACCVLT06)
LURULE IPADDR (0.0.0.0,255.255.255.255)
PORT (1023)
USER (*)
APPLID (CICS)
POOL (CICSPOOL)

The LURULE states a PORT or APPLID that relates to a SERVICE/APPL
combination for access to CICS (defined in APPCFGxx) and uses the POOL
keyword to reflect CICSPOOL).

The associated SERVICE and APPL statements are:
APPCFGxx statements
SERVICE NAME (CICS) MODULE (T01S3270) PORT (1023)
APPL NAME (CICS) APPLID (CICS)
OPTIONS (3278) PORT (1023)

Example 2 This example shows how to create the LURULE without an LUPOOL
statement.
LURULE IPADDR (0.0.0.0,255.255.255.255)
PORT (1023)
USER (*)
APPLID (CICS)
LU (ACCVLT02,ACCVLT03,ACCVLT04,ACCVLT05,ACCVLT06)

LU Name Rules (LURULE)

Identifies the criteria used to determine how an LU name is assigned to a remote
Server Telnet user.

Note: There is no limit to the number of LU rules you can define.

Two types of LU pools are used by LU rules:

■ The first type is defined explicitly by the LUPOOL statement and can be
shared by multiple LURULEs

■ The second is defined implicitly by the LU keyword on the LURULE
statement and these pools are exclusive to the LURULE

Telnet Configuration 9–41

The LU Pool Facility—APPLUPxx Member

Each rule must use either the POOL or LU keyword to identify LU names
associated with this rule. LU name selection is determined by testing each rule in
the order it appears in the APPLUPxx member using the following criteria (in
order of significance):

■ Remote IP address

■ Local port address

■ VTAM APPLID

■ Local user identification

Note: Since rules are exercised in the order they appear in the APPLUPxx
member, enter the rules in the order of most specific to least specific.

The last rule is considered the default and identifies the default pool of LU
names. Remote users not meeting the criteria for any rule are not assigned an LU
name necessary to reach local host VTAM applications. Additionally, all LU
names that are used must be defined in one or more LUPOOL statements or on
the LU keyword of the LURULE statements.

In summary, all LU names used must be defined and all users must match at
least one rule. The same PARM members can be shared between multiple
Unicenter TCPaccess Telnet Server address spaces, but sharing these LUs can
cause a problem if a REFRESH is attempted or if matching LU rules are not
defined in the shared address spaces.

Refreshing the LUPOOL Facility

You can refresh the LUPOOL facility while Unicenter TCPaccess Telnet Server is
actively running by issuing the following APP command:
REFRESH TASK (n) LUPARM (APPLUPxx)

Where n is the task number and APPLUPxx is the member. See the System
Management Guide for more information on the REFRESH command. If there is a
problem with the new LU pool configuration member, informative messages
describing the problem display at the operator console and the old configuration
stays active.

9–42 Customization Guide

LUPOOL Statement

LUPOOL Statement
The LUPOOL statement has the following syntax:
LUPOOL NAME (poolname)

 TYPE (TN3270 | TN3270E | PRINTER)
 ALLOCATE (FIRST | NEXT)
 LU (luname)

LUPOOL Statement Syntax

NAME (poolname) Identifies the enclosed parameter as a unique pool name. poolname can be one- to
eight alphanumeric characters.

Default: None. Keyword and parameter are required.

TYPE (TN3270 | TN3270E | PRINTER)

Specifies the type of LUs in this pool.

TN3270 Specifies that all LUs specified are designated for allocation
for applications requiring only a TN3270 terminal LU.

TN3270E Specifies that all LUs specified are used for applications
requiring TN3270E terminal and possibly acquiring an
associated printer LU.

PRINTER Specifies that all LUs are designated for printer allocation
only.

Default: TN3270E if LUs are defined with associated printers, otherwise TN3270.

Telnet Configuration 9–43

LUPOOL Statement

ALLOCATE (FIRST | NEXT)

Directs LUPOOL LU allocation. Can be abbreviated as AL(N) or AL(F) on the
LUPOOL statement.

FIRST Directs LUPOOL to allocate the first available LU.
ALLOCATE(FIRST) is more efficient than
ALLOCATE(NEXT). Therefore it is the preferred startup
option.

NEXT Directs LUPOOL to allocate LUs in sequential order. This
option adds flexibility in an error LU situation.

 Note: Use this option only at the direction of Customer
Support when the VTAM network is not functioning
properly.

Default: FIRST.

LU (luname) Specifies the LU name. This can be an acbname, or, if TYPE is specified, a
terminal or printer luname.

The parameter can extend multiple lines. Each entry specifies a unique LU name
that has been defined in the installation VTAM configuration files

See LU Specification for TN3270 and Printers for more information on setting
these parameters.

Default: None. Keyword and parameter are required.

Note: The keyword APPEND is no longer supported and is ignored. Use LU
Chaining instead. See the POOL parameter in LURULE Statement.

9–44 Customization Guide

LUPOOL Statement

LU Specification for TN3270 and Printers

LU Pool syntax for terminals and printers consists of LUs alone, LU ranges, LUs
with associated printers, or printers alone. Ranges of LU names are specified as
LU0001:LU9999, LUAAAA:LUZZZZ , or LU01AA1:LU99ZZ9. LU names must
begin with the same stem, and mixing of alphabetic and numeric names in a
range is not be supported (for example, LU01AAA:LU01ZZ9).

Terminal LUs may be specified as:

■ A list of one or more LUs separated by commas

■ One or more ranges of LUs separated by commas

■ A combination of the above

Parentheses determine whether you are specifying a simple list of LUs or
terminals with associated printers. A simple list of LUs is specified with a single
set of parentheses as:
LU (LU0001, LU0002)

To associate a printer with a terminal, specify the terminal LU, followed by the
printer LU, with both enclosed by parentheses. For example:
LU ((T10000, P10000))

If a printer pool is defined, only printer LUs need to be specified.
TYPE(PRINTER) must be specified to designate a printer-only pool. Printer LU
names are subject to the same range expansion as terminal LU names described
above. For example:
LU (P10000:P10009)

To summarize the use of parentheses:

Level One ‘(‘ specifies list notation.

Level Two ‘((‘ specifies a terminal with associated printer notation

Level Three ‘(((specifies a list for either terminal or printer Lus

Telnet Configuration 9–45

LUPOOL Statement

Examples

TN3270 Pools and
Associated Printers
Example

You can use the following syntax for TN3270 pools, TN3270E pools without
associated printers, and PRINTER pools.

LU(LU1,LU2,...,LUn)
LU(LUA001:LUA999,...,LUZ001:LUZ099)
LU(LU1,LU2,LUA001:LUA999,LUZ001:LUZ099...)

TN3270E Pools Only
Example

The following syntax can be used for TN3270E pools only. Associated printer
LUs are defined.
LU((LUT1,LUP1),(LUT2,LUP2),...(LUTn,LUPn)) Terminal/Printer LUs pair
specifications
* LUT1 associated with printer LUP1, LUT2 associated with printer LUP2
LU((LUT1:LUTn,LUP1:LUPn)) Terminal/Printer LU range pairings
* LUT1 associated with printer LUP1, LUT2 associated with LUP2
LU(((LUT1,LUT2,...,LUTn),(LUP1,LUP2,...LUPn))) Terminal list and associated
Printer list
* LUT1 associated with LUP1, LUT2 associated with LUP2

Specifying One Printer for Multiple Terminal LUs

Terminals with an associated printer must identify an equal number of each type
of LU, however, you can specify one printer LU to associate with all terminal
LUs.
LU((LUT1:LUTn,LUP1)) Multi terminal LUs associated to 1 printer
* LUT1 thru LUTn are associated with a single printer LUP1
LU(((LUT1,LUT2,...,LUTn),LUP1)) Multi terminal LUs associated to 1 printer

9–46 Customization Guide

LURULE Statement

LURULE Statement
The LURULE statement has the following syntax:
LURULE [IPADDR (ip_source_min_addr, ip_source_max_addr)]

 [PORT (port_dest_num)]
 [APPLID (VTAM_appl_applid)]
 [USER (host_userid)]
 [POOL (lupool_name,...lupool_name)]
 [RESOURCE (name)]
 [TYPE (TN3270 | TN3270E | PRINTER)]
 [TRACE]
 LU (lunames)

LURULE Statement Syntax

IPADDR (ip_source_min_addr, ip_source_max_addr)

 Specifies the first and last IP address in a range of addresses for which this rule
applies.

If ip_source_max_addr is not specified, the rule only applies to the
ip_source_min_addr IP address. An asterisk (*) can be specified for either first or
last IP address parameter.

An asterisk in ip_source_min_addr implies an IP address of 0.0.0.0.

An asterisk in ip_source_max_addr implies an IP address of 255.255.255.255.

Default: All IP addresses (0.0.0.0,255.255.255.255).

PORT (port_dest_num) Specifies the target local port number as a decimal number. An asterisk '*' can be
specified to indicate all ports.

Default: * (all local Server Telnet ports)

APPLID (VTAM_appl_applid)

Specifies the VTAM applid/mask for the application(s) for which this rule
applies. The applid is identified via the APPCFGxx APPL configuration
statement. For more information, see the section describing the APPCFGxx APPL
statement and defining installation dependent applications.

A mask can be used to identify multiple applications. These are the rules for
masks:

■ Must not exceed eight characters

■ An asterisk (*) represents 0 or more consecutive characters

■ A percent (%) represents a single character

Telnet Configuration 9–47

LURULE Statement

Note: If you are using the USS Table facility for Server Telnet access to VTAM
applications, and you code the PRELU option in the SERVICE statement to
preallocate an LU name, you cannot use the APPLID selection criteria on the
LURULE statement. The APPLID selection criteria must be (*) generic for the
desired LU pool.

Default: * (all applications).

USER (host_userid) Specifies the local user ID/mask to associate user ID(s) with this rule. You can
use a mask to identify multiple user IDs.

Default: * (all users).

POOL (lupool_name, ...lupool_name)

 Specifies the LUPOOL(s) to use when the remote user satisfies the LURULE
criteria.

You can chain LUPOOLs by specifying a list of LUPOOLs to search for an
available LU. Pools may be of any TYPE.

RESOURCE (name) Specifies the TN370E resource name. A resource name provides additional
control and flexibility over LU allocation for TN3270E clients.

TYPE (TN3270 | TN3270E | PRINTER)

Specifies the type of LUs in this pool.

TN3270 Specifies that all LUs specified are designated for allocation
for applications requiring only a TN3270 terminal LU.

TN3270E Specifies that all LUs specified are used for applications
requiring TN3270E terminal and possibly acquiring an
associated printer LU.

PRINTER Specifies that all LUs are designated for printer allocation
only.

Default: TN3270E if LUs are defined with associated printers, otherwise TN3270.

TRACE Specifies that Server Telnet tracing be enabled for the LU names controlled by
this LURULE. A GTF trace must be started with the USR trace type enabled.

Use module AMDUSR to format GTF records written by this trace.

Note: This parameter should be used only with assistance from Customer
Support.

LU (lunames) See LU Specification for TN3270 and Printers for more information.

9–48 Customization Guide

LURULE Statement

Initial Changes to APPLUPxx

You may need to make these changes for the initial installation:

LUPOOL If you changed the ACBNAMEs on the virtual terminal
definitions for Unicenter TCPaccess Telnet Server in
SYS1.VTAMLST, enter those names in place of the ones
specified.

LURULE LURULE defines the general rule for TELNET usage.

If you want to establish more pools and rules now, see the following two
sections. You can make changes later and implement them with the REFRESH
operator command. If you are not going to establish more pools or rules, you can
skip to the next section, Unicenter TCPaccess Telnet Server Application
Definitions.

Usage Notes

LUnames can be specified in one or more LUPOOLs. If LUnames are specified in
multiple pools, they should be defined with the same attributes. The specification
should indicate the same pool TYPE and the same associated printer, if TN3270E.

LUpool chaining may be more appropriate than defining the same LUs in
multiple pools. However, if you define LUpool chains specifying different pool
TYPEs, you may encounter the following conditions.

■ For TN3270 clients: After all TN3270 defined LUs are allocated, available
TN3270E LUs from chained pools are allocated.

■ For TN3270E clients: After all TN3270E defined LUs are allocated, available
TN3270 LUs from chained pools are allocated. When a TN3270 defined LU is
allocated to a TN3270E client, an associated printer will not be available.

Lupool chaining adds flexibility over LU control and reduces redundant LU
specification in multiple pools.

To provide greater control over LUs, specify LURULEs with APPL keywords.
Also, specify a resource for additional control over TN3270E clients as client
software permits.

Telnet Configuration 9–49

LURULE Statement

Potential Problems
When Using the
TN3270E Protocol

The TN3270E protocol requires that the SLU be acquired during Telnet
negotiation. For TN3270E, this normally means that the SLU is chosen before
USS message 10 displays, and before selecting an application.

 If the APPLID or USER parameter is used on the LURULE statement, this can
lead to unexpected results. The APPLID parameter is ignored when the SLU is
selected. The user ID is saved, and a login screen is presented after negotiation.
If the login fails, or if the user ID does not match the LURULE, the session is
disconnected.

One way around this problem is to specify STARTNVT on the SERVICE
statement. This causes the server to display the USS message 10 in NVT mode, so
that the APPLID is chosen before TN3270E negotiation, and can be used as a
criterion in SLU name selection.

CAUTION! Although the protocol specifies support for this feature, many clients do not
behave well when the server attempts to negotiate down from TN3270E in order to
display message 10 after ending a session with a PLU. The client may hang or exhibit
unpredictable behavior. Verify that your TN3270 client software can handle negotiation
from TN3270E to NVT mode, before configuring STARTNVT.

APPLUPxx Usage Notes

ACBNAME and LU
Names

The names specified in the LU keyword are ACBNAMES and not LU names.
Frequently, the ACBNAME and the LU name are the same, but it is possible for
them to be different. When they are different, the names in the keyword must
be the ACBNAMEs.

APPLUPxx Not
Provided

If this member is missing, the ACCPOOL load module is used to provide
ACBNAMEs for the LUs to use for Server Telnet.

9–50 Customization Guide

LURULE Statement

APPLUPxx Examples

This is an example of an installation that has 30 LU names defined. They must be
able to:

■ Trace on a single LU name in case of VTAM problems:

Define a test user ID and a rule created to assign a specific LU name based on
the user ID.

■ Define a limited number of LU names to the Payroll application and limit
their use to authorized users of the application:

Define a pool containing the LU names that are defined to the Payroll
application. The associated rule uses the application's APPLID and the user's
user ID to determine if the LU name should be assigned.

■ Make the remaining LU names available to all users:

Define a pool for the remaining LU names. The associated rule has no
restrictions and lets all users be assigned an LU name from this pool.

This is an example of the required APPLUPxx member.

* RULE TO BE USED FOR TESTING TO ALLOW TRACING ON ONLY
* ONE LUNAME. MATCH FOR THIS RULE IS BASED ON USERID AND
* POOL IS DEFINED IMPLICITLY VIA THE LU PARAMETER

LURULE IPADDR(0.0.0.0,255.255.255.255)
 PORT(*)
 USER(TST*)
 APPLID(*)
 LU(ACCVLT30)
--
* POOL DEFINED FOR CICS PAYROLL APPLICATION. ONLY THE
* LUNAMES CONTAINED IN THIS POOL ARE DEFINED TO THE
* APPLICATION.
--
LUPOOL NAME(ACCTPOOL)
 LU(ACCVLT02,ACCVLT03,ACCVLT04)
--
* RULE FOR CICS PAYROLL APPLICATION - MATCH BASED ON
* USERID AND APPLID.
--
LURULE IPADDR(0.0.0.0,255.255.255.255)
 PORT(*)
 USER(AC4*)
 APPLID(ACCICS4)
 POOL(ACCTPOOL)

* GENERAL POOL FOR ALL USERS.

LUPOOL NAME(GENERAL)
 LU(ACCVLT05,ACCVLT06,ACCVLT07,ACCVLT08,ACCVLT09,
 ACCVLT10,ACCVLT11,ACCVLT12,ACCVLT13,ACCVLT14,
 ACCVLT15,ACCVLT16,ACCVLT17,ACCVLT18,ACCVLT19,
 ACCVLT20,ACCVLT21,ACCVLT22,ACCVLT23,ACCVLT24,
 ACCVLT25,ACCVLT26,ACCVLT27,ACCVLT28,ACCVLT29)

Telnet Configuration 9–51

Terminal Profile (TERMPROF)

--
* GENERAL RULE - NO RESTRICTIONS

LURULE IPADDR(0.0.0.0,255.255.255.255)
 PORT(*)
 USER(*)
 APPLID(*)
 POOL(GENERAL)

Terminal Profile (TERMPROF)
The TERMPROF statement and the TERMPROF parameter in APPL definitions
together define site-configurable terminal environmentals (terminal type,
logmode name, maximum buffer size) used during the terminal-type negotiation
process. The TERMPROF facility removes constraints in the Server Telnet
environment by giving users the ability to customize their own TELNET terminal
profiles.

TERMPROF usage is optional. If it is not specified for an application, the
supplied defaults are used (see below). However, the application (PLU)
determines which parameters are used for a session. The logmode entry name in
the TERMPROF statement is only a suggested name. Usually, the host
application accepts this, but some applications, such as CICS, build their own
session parameters based on entries in the application's Terminal Control Table
(TCT) and ignore the suggested logmode table name.

TERMPROF Statement Syntax
TERMPROF GROUP (terminal_profile_group_name)

 LOGMODE3270E (logmode_name)
 LOGMODENAME (ACF/VTAM_logmode_name)
 TERMTYPE (terminal_type)
 BUFFERSIZE (buffersize)

GROUP (terminal_profile_group_name)

terminal_profile_group_name
Name of the TERMPROF group to which this TERMPROF
belongs. This is the same value as specified in an APPL
statement’s TERMPROF parameter to associate the
application with a terminal profile group.

Default: None.

9–52 Customization Guide

Terminal Profile (TERMPROF)

LOGMODE3270E (logmode_name)

The ACF or VTAM logmode table entry name (not the logmode table module
name) to use for the session, if TN3270E is negotiated.

Note: This name must exist in the logmode load module (either ISTINCLM or
user-specified) that will be used for the session.

Alias LM3270E.

Default: SNX32702.

LOGMODENAME (ACF/VTAM_logmode_name)

The ACF or VTAM logmode table entry name (not the logmode table module
name) to use for the session.

Note: This name must exist in the logmode load module (either ISTINCLM or
user-specified) to use for the session.

Default: D4B32782.

TERMTYPE (terminal_type)

The terminal type to use.

Note: This must be one of the recognized TELNET terminal types, such as IBM-
3278-2.

Default: IBM-3278-2.

BUFFERSIZE (buffersize)

Specifies the maximum buffer size.

Note: This parameter is ignored by the TN3270E server.

Default: 976.

Telnet Configuration 9–53

Terminal Profile (TERMPROF)

TERMPROF Statement Usage Notes

Parameters of Note
for the TERMPROF
Statement

You may need to change these parameters on the TERMPROF statement:

GROUP The terminal group name. (Required).
LOGMODENAME The logmode name.
TERMTYPE The type of terminal. For example, IBM-3278-2.
BUFFERSIZE The maximum buffer size.

Invoking TERMPROF To invoke TERMPROF, specify it on the APPL statement (explicit) or the
TELNET statement (implicit) for promotion to all succeeding APPL and
TELNET statements.

To invoke LU2 support for a given session/sessions, have your Unicenter
TCPaccess administrator designate which applications have SNA capability in
the APPCFGxx member by associating these applications with a set of
ACF/VTAM SNA/LU2 logmode tables.

The TERMPROF facility is normally invoked for 3278 (full-screen) sessions only.
Full-screen sessions are identified by the OPTIONS(3278) parameter in the
APPCFGxx APPL statement (3278 is the default). Full-screen sessions undergo
terminal negotiation at session initialization. If terminal negotiation fails, or if
Unicenter TCPaccess Telnet Server and the client are unable to agree on a
suitable terminal type, the TERMPROF facility is discarded and the session
proceeds in 3767 (line) mode using INTERACT as the mode table name.
INTERACT is a standard mode table name in the default mode table
(ISTINCLM) distributed with ACF/VTAM.

TERMPROF can also be invoked for line mode (non-3278) sessions to provide
flexibility in choosing the mode table name to use for these sessions. Prior to
TERMPROF, line mode sessions were forced to use INTERACT as the mode table
name. Since line mode sessions do not undergo terminal negotiation, you specify
the name of a single entry in the associated TERMPROF group to use for the
session. When TERMPROF is used for line mode sessions, the TERMTYPE
parameter is ignored and BUFFERSIZE is preset to 256. If TERMPROF is omitted
for line mode sessions, INTERACT is used for the logmode entry name. To
identify line mode sessions, specify OPTIONS(3767/LINEMODE).

Using Logmode
Tables

Logmode tables contain the session parameters used by ACF/VTAM session
initiation routines to determine rules that will be observed between session
partners, such as the host application and the TELNET user. These logmode
tables can be the standard set supplied with ACF/VTAM, or a set customized
by the user. Entries in the logmode tables also determine if the session supports
LU2. The TERMPROF configuration statement lets the Unicenter TCPaccess
administrator declare which set of logmode tables to use for which Unicenter
TCPaccess sessions or applications.

9–54 Customization Guide

Terminal Profile (TERMPROF)

Using the
OPTIONS(SNA)
Parameter

The OPTIONS(SNA) parameter on the APPL or TELNET statement has nothing
to do with whether or not LU2 support is invoked.

This parameter causes the command code (first byte in any 3270 outbound data
stream) to be translated to an SNA command code. This occurs because some
applications do not know they are communicating with an SNA partner. It is a
good idea, however, to specify this parameter for SNA-designated applications
to ensure the client software does not get confused.

Changing Buffer Size For LU2 sessions, the buffer size can be any value, but is generally greater than
or equal to 256. This is because LU2 sessions support SNA chaining. For LU0
sessions (non-SNA), this value must be at least the maximum screen size
supported by the device type negotiated at session initialization.

For example, if emulating a non-SNA IBM-3278-2, this value should be at least
1920 (24 x 80). Similarly, if emulating an IBM-3278-3 session, it should be at
least 2560 (32 x 80). Failure to observe LU0 restrictions can result in serious side
effects.

There is a difference in the BUFFERSIZE parameter between SNA and non-SNA
TERMPROF definitions.

■ For SNA terminal profiles, BUFFERSIZE can be set to a small value as SNA
supports RU chaining. The smaller buffer sizes enable users to conserve
virtual storage thereby improving performance when network volume is
high.

■ For non-SNA terminal profiles, the BUFFERSIZE parameter must be set to at
least the maximum screen size for the device, as non-SNA (LU0) does not
support RU chaining. If data is received in excess of the BUFFERSIZE for an
LU0 device, message T01ST026I is issued and the session terminated.

Large buffer sizes reduce chaining and thus yield better response time, but
possibly at a cost of reduced number of concurrent sessions or general
sluggishness across the network. You must decide which is the best choice for
your configuration.

For SNA sessions, the default buffer size of 976 is probably larger than you need.
For non-SNA sessions, this value is too small for the majority of terminals (3278-2
and up) accessing Unicenter TCPaccess Telnet Server.

Note: To avoid screen problems for LU0 sessions, always specify a buffer size
value using the above guidelines for LU0 sessions, or you can use the buffer size
values in the APPCFG00 example.

Telnet Configuration 9–55

Terminal Profile (TERMPROF)

Supporting
LOGMODE
Substitution for USS
Tables

For special instructions on using TERMPROF to support LOGMODE
substitution for USS tables, see USS Table Support for Server TELNET.

Using the TELNET
Terminal Negotiation
Process

The TELNET terminal negotiation process compares the TERMTYPE value
given in the TERMPROF statement to the terminal type received from the
client. If they match, the logmode name and buffer size from the matching
TERMPROF entry are used for the session. Sample TERMPROF statements in
APPCFG00 on any V2.0+ TCPaccess distribution tape contain paradigms of the
TELNET terminal types currently supported. If you are using client software
capable of supporting EDS (3270 extended data streams), the terminal type
should have the string -E appended to it (for example, IBM-3279-3-E).

Important! TERMPROF usage applies to the Server Telnet environment only. It does
not apply to the Unicenter TCPaccess User TELNET (VTELNET) environment.

Default Terminal Profiles

If a terminal profile is not defined, the following defaults are used.

Device Type Name TN3270
Logmode

TN3270E Logmode Buffersize

IBM-3278-1 D4B32781 n/a 1200

IBM-3278-2 D4B32782 SNX32702 3000

IBM-3278-2-E NSX32702 SNX32702 3000

IBM-3278-3 D4B32783 SNX32703 3840

IBM-3278-3-E NSX32703 SNX32703 3840

IBM-3278-4 D4B32784 SNX32704 4300

IBM-3278-4-E NSX32704 SNX32704 4300

IBM-3278-5 D4B32785 SNX32705 4455

IBM-3278-5-E NSX32705 SNX32705 4455

IBM-3279-2 D4B32782 n/a 3000

IBM-3279-2-E NSX32702 n/a 3000

IBM-3279-3 D4B32783 n/a 3840

IBM-3279-3-E NSX32703 n/a 3840

IBM-3279-4 D4B32784 n/a 4300

9–56 Customization Guide

Terminal Profile (TERMPROF)

Device Type Name TN3270
Logmode

TN3270E Logmode Buffersize

IBM-3279-4-E NSX32704 n/a 4300

IBM-3279-5 D4B32785 n/a 4455

IBM-3279-5-E NSX32705 n/a 4455

IBM-3277 D4B32782 n/a 2400

IBM-3277-2 D4B32782 n/a 2400

LINEMODE INTERACT n/a 256

DYNAMIC n/a SNX32702 n/a

IBM-3287-1 n/a SNX32702 n/a

TERMPROF Example

This is an example of a partial APPCFGxx configuration showing both LU0 and
LU2 definitions. The logmode names used in this example are the names of
standard SNA (D4Axxxxx) and non-SNA (D4Bxxxxx) logmode entries supplied
with the ACF/VTAM product. They could also be the names of a set of custom
logmode tables.
.

.

.
APPL NAME (TSOS) APPLID (TSOAPPL) OPTIONS (3278 SNA)
TERMPROF (SNAGROUP) PASS (NTRA)
APPL NAME (TSON) APPLID (TSOAPPL) OPTIONS (3278)
TERMPROF (NOSNAGRP)
.
.
.
*
* SNA TERMPROF Group (LU2)
*
TERMPROF (SNAGROUP) TERMTYPE (IBM-3278-1)
 BUFFERSIZE (256) LOGMODENAME (D4A32781)
TERMPROF (SNAGROUP) TERMTYPE (IBM-3278-2)
 BUFFERSIZE (256) LOGMODENAME (D4A32782)
TERMPROF (SNAGROUP) TERMTYPE (IBM-3278-3)
 BUFFERSIZE (256) LOGMODENAME (D4A32783)
TERMPROF (SNAGROUP) TERMTYPE (IBM-3278-4)
 BUFFERSIZE (256) LOGMODENAME (D4A32784)
TERMPROF (SNAGROUP) TERMTYPE (IBM-3278-5)
 BUFFERSIZE (256) LOGMODENAME (D4A32785)

Telnet Configuration 9–57

Modifying VTAMLST Application Definitions

*
* Non-SNA TERMPROF Group (LU0)
*
TERMPROF (NOSNRGRP) TERMTYPE (IBM-3278-1)
 BUFFERSIZE (960) LOGMODENAME (D4B32781)
TERMPROF (NOSNRGRP) TERMTYPE (IBM-3278-2)
 BUFFERSIZE (1920) LOGMODENAME (D4B32782)
TERMPROF (NOSNRGRP) TERMTYPE (IBM-3278-3)
 BUFFERSIZE (2560) LOGMODENAME (D4B32783)
TERMPROF (NOSNRGRP) TERMTYPE (IBM-3278-4)
 BUFFERSIZE (3440) LOGMODENAME (D4B32784)
TERMPROF (NOSNRGRP) TERMTYPE (IBM-3278-5)
 BUFFERSIZE (3564) LOGMODENAME (D4B32785)

Note: User-defined logmode tables, like all other logmode tables, must reside in
the ACF/VTAM load library (normally SYS1.VTAMLIB).

As shown in the example above, you start a TELNET session by entering TSOS
at the TELNET command prompt; TELNET runs as an SNA session. Entering
TSON invokes the same host TSO application in non-SNA mode. For example, if
you enter TSOS, and during terminal negotiation you send a terminal type of
IBM-3278-3, Server TELNET uses logmode entry D4A32783 to establish the
connection with the host. D4A32783 is the standard IBM ACF/VTAM logmode
table used to establish an SNA session with a 3278-3 device.

Modifying VTAMLST Application Definitions
This section provides information to help you change the APPL statements in the
Unicenter TCPaccess Telnet Server application major node in SYS1.VTAMLST.

If you made any changes to the VTAM definitions supplied in the A03ACCES
member when you installed them in your own system, or if you want to make
changes now, corresponding changes may be required in the Unicenter
TCPaccess software.

If you used the default definitions, you see the chapter “Domain Name Resolver
(DNR) Configuration” to continue the customization.

However, you must review the following topics if you make any changes now or
in the future, including the addition of VLTs:

■ Customizing the Application Definition ACBNAME

■ Customizing the Application Definition LU Name

■ Customizing the Terminal Definition ACBNAME

■ Customizing the Terminal Definition LU Name

■ Adding or Deleting Terminal Definitions

■ Configuring to VTAM Applications

9–58 Customization Guide

Modifying VTAMLST Application Definitions

Setting Up Pools

The following information describes how to set up pools of APPL statements for
different uses:

■ A pool of APPL statements for Unicenter TCPaccess Telnet Server to use as a
Primary Logical Unit (PLU).

■ One APPL statement must be defined for each copy of Unicenter TCPaccess
Telnet Server running on your system.

■ A pool of APPL statements for use as Virtual Logical Terminals (VLTs).

VLTs are used by the TSO client programs (TCPEEP, TELNET, FTP, and
FTP2) to connect to Unicenter TCPaccess and are also used by the TELNET
Server to act as virtual terminals to let TELNET users access SNA application
programs such as TSO, CICS, and IMS).

Unicenter TCPaccess Telnet Server Application Definitions
==

* TCP VTAM DEFINITIONS
==
* THIS MEMBER DEFINES THE APPL STATEMENTS AND MAJOR NODES
* NEEDED BY TCP TO PROPERLY UTILIZE VTAM. COPY IT TO
* SYS1.VTAMLST (OR YOUR SITE'S EQUIVALENT DATA SET.
* MAKE SURE IT IS ADDED TO ATCCON00 (OR YOUR SITES MEMBER) SO
* IT WILL AUTOMATICALLY BE STARTED DURING VTAM INITIALIZATION
==
A03ACCES VBUILD TYPE=APPL APPLICATION MAJOR NODE
==
* TCP PRIMARY LOGICAL UNIT (PLU) POOL
==
==
* ONE APPL STATEMENT IS NEEDED FOR EACH COPY OF TCP THAT
* WILL BE ACTIVE ON YOUR SYSTEM
==
*
A03ACCA APPL ACBNAME=ACCES, TCP APPLICATION DEFINITION +
VPACING=1,AUTH=(VPACE),EAS=10 PRODUCTION VERSION
*
A03ACCAE APPL ACBNAME=ACCESE, TCP APPLICATION DEFINITION +
VPACING=1,AUTH=(VPACE),EAS=10 TEST VERSION
*
==
*TCP VIRTUAL LOGICAL TERMINAL (VLT) POOL
==
*ONE APPL STATEMENT IS NEEDED FOR EACH APPL THAT IS DEFINED
*IN ACCPOOL 1 (VLT POOL) OF THE ACCPOOL MEMBER WHICH IS LOCATED
*IN THE SAMP DATA SET OR EACH APPL THAT IS DEFINED IN ANY LU
*KEYWORD IN APPLUPXX
==
*
A03VLT01 APPL ACBNAME=ACCVLT01, TCP VIRTUAL TERMINAL DEFINITION +
VPACING=1,AUTH=(VPACE),EAS=10

Telnet Configuration 9–59

Modifying VTAMLST Application Definitions

*
.
.
*
A03VLT99 APPL ACBNAME=ACCVLT99, TCP VIRTUAL TERMINAL DEFINITION +
VPACING=1,AUTH=(VPACE),EAS=10

Customizing the Application Definition ACBNAME

This section describes how to change the ACBNAMEs for Unicenter TCPaccess
applications. In the sample major node definition, change the ACBNAMEs
(ACCES and ACCESE) in these APPL statements.

Note: If a line of code must wrap, a continuation character (+) must appear in
position 72:

Unicenter TCPaccess
Telnet Server
Application
Definitions

A03ACCA APPL ACBNAME=ACCES, TCP APPLICATION DEFINITION +
VPACING=1,AUTH=(VPACE),EAS=10 PRODUCTION VERSION
*
A03ACCAE APPL ACBNAME=ACCESE, TCP APPLICATION DEFINITION +
VPACING=1,AUTH=(VPACE),EAS=10 ETHERNET VERSION

To change the Unicenter TCPaccess Telnet Server application ACBNAME, you
need to change the value of the ACBNAME parameter in APPCFGxx.

1. Change the ACBNAME parameter in the application definitions in
SYS1.VTAMLST.

You can activate or deactivate APPL definitions to VTAM.

To inactivate an APPL to VTAM, execute this command:
V NET,INACT,ID=A03ACCES

To activate an APPL to VTAM, execute this command:
V NET,ACT,ID=A03ACCES

2. Change the value of the ACBNAME parameter on the GLOBAL statement in
PARM member APPCFGxx to the new ACBNAME.

3. Specify the proper suffix for APPCFGxx in the START APP CNFG(xx)
command in the STARTxx PARM member.

9–60 Customization Guide

Modifying VTAMLST Application Definitions

Customizing the Application Definition LU Name

This section describes how to change the LU name in the PLU pool for the
Unicenter TCPaccess Telnet Server applications.

When you change the Unicenter TCPaccess Telnet Server application LU name
you may also need to make changes to these statements:

■ TSO client programs, because they need to know the LU name to connect to
the Unicenter TCPaccess Telnet Server application

■ APPL statements that reference that application LU name in APPCFGxx

■ VTAM interpret and USS tables that reference that application LU name

■ Netview CLISTs or other network management facilities that reference that
application LU name

■ Network or session manager products that reference that application LU
name

■ Other VTAM applications that reference that application LU name

Unicenter TCPaccess
Telnet Server
Application
Definitions

A03ACCA APPL ACBNAME=ACCES, +
VPACING=1,AUTH=(VPACE),EAS=10
*
A03ACCAE APPL ACBNAME=ACCESE, +
VPACING=1,AUTH=(VPACE),EAS=10

Follow these steps to change the LU name:

1 Change the LU name (label) on the Unicenter TCPaccess Telnet Server
application definition.

2. Change the application LU name in SAMP member APPLNAME.

This is the code for module APPLNAME:
APPLNAME CSECT

 DC CL7'A03ACCA'
END

The specified application LU name can be a maximum of seven characters.
This enables the Unicenter TCPaccess Telnet Server TSO programs to
specify a suffix character (using the SYS= parameter) letting the TSO
programs connect to production and test versions of Unicenter
TCPaccess Telnet Server. The APP= parameter can also be used to
connect to other versions of Unicenter TCPaccess Telnet Server. The
APP= parameter accepts a full LU name instead of only a suffix
character.

3. CNTL data set member UMODAPPL contains an SMP/E usermod that
instructs SMP/E to reassemble and link-edit the APPLNAME module using
the APPLNAME member from the SAMP data set. This updates the client
commands located in the LINK library.

Telnet Configuration 9–61

Modifying VTAMLST Application Definitions

Change the xxx to the correct FMID suffix for the TCP base product.

This SMP/E JCL receives and applies the USERMOD:
//SMPE EXEC PGM=GIMSMP,REGION=4096K,
// PARM=’CSI=TRGINDX.CSI,PROCESS=WAIT’
//SMPHOLD DD DUMMY
//SMPLOG DD DSN=TRGINDX.SMPLOG,DISP=MOD
//SMPOUT DD SYSOUT=HOLDCL
//SMPPTFIN DD *
++ USERMOD (MU0APPL) .
++ VER (Z038)
FMID (T0xxxx) /* CHANGE TO CORRECT TCP/IP FMID */ .
++SRC (APPLNAME)
TXLIB(TCPSAMP)
DISTMOD(ATCPLOAD)
DISTLIB(ATCPSAMP) .
/*
//SMPCNTL DD *
SET BDY(GLOBAL) .
RECEIVE S(MU0APPL) .
SET BDY(TCPTZN) .
APPLY S(MU0APPL) .
/*

4. Change any APPL statements in APPCFGxx that reference the original
application LU name to reference the new LU name. These definitions are
provided in the sample APPCFG00 primarily for testing purposes.

5. Change any VTAM interpret and USS tables that reference the original
application LU name to reference the new LU name.

6. Change Netview, network and session managers, and other VTAM
applications that reference the original application LU name in accordance
with IBM or other vendor documentation.

7. If necessary, execute LLA,REFRESH to update LINK library.

Customizing the Terminal Definition LU Name

To change the Unicenter TCPaccess Telnet Server virtual terminal LU names
modify the LU names in the virtual terminal APPL definitions in the Unicenter
TCPaccess Telnet Server major node definition in SYS1.VTAMLST. No other
changes are required.

9–62 Customization Guide

Modifying VTAMLST Application Definitions

Customizing the Terminal Definition ACBNAME

This section describes how to change the ACBNAMEs of the APPL statements
for the Unicenter TCPaccess Telnet Server VLTs. In the sample major node
definition, the ACBNAMEs (ACCVLTxx) are in these APPL statements:

Unicenter TCPaccess
Telnet Server Virtual
Terminal Definitions

A03VLT01 APPL ACBNAME=ACCVLT01, TCP VIRTUAL TERMINAL DEFINITION +
VPACING=1, AUTH=(VPACE),EAS=10
*
A03VLT02 APPL ACBNAME=ACCVLT02, TCP VIRTUAL TERMINAL DEFINITION +
VPACING=1,AUTH=(VPACE),EAS=10
*
A03VLT03 APPL ACBNAME=ACCVLT03, TCP VIRTUAL TERMINAL DEFINITION +
VPACING=1,AUTH=(VPACE),EAS=10
*
A03VLT04 APPL ACBNAME=ACCVLT04, TCP VIRTUAL TERMINAL DEFINITION +
VPACING=1,AUTH=(VPACE),EAS=10
*
A03VLT05 APPL ACBNAME=ACCVLT05, TCP VIRTUAL TERMINAL DEFINITION +
VPACING=1,AUTH=(VPACE),EAS=10
.
.
*
A03VLT99 APPL ACBNAME=ACCVLT99, TCP VIRTUAL TERMINAL DEFINITION +
VPACING=1,AUTH=(VPACE),EAS=10
*

The ACCPOOL statement specifies the ACBNAME entries for a pool of virtual
terminals. Because the Unicenter TCPaccess Telnet Server TSO commands use
the module, the module is installed into a system link list library.

Note: Because Unicenter TCPaccess Telnet Server ACBNAME entries are case
sensitive, all ACBNAME entries must be all uppercase.

Follow these steps to change the terminal definition ACBNAME:

1. Change the ACBNAME parameter in the Unicenter TCPaccess Telnet Server
application definitions in SYS1.VTAMLST.

You can activate or deactivate APPL definitions to VTAM.

To inactivate an APPL to VTAM, execute this command:
V NET,INACT,ID=A03ACCES

To activate an APPL to VTAM, execute this command:
V NET,ACT,ID=A03ACCES

2. Change the ACBNAME parameter for the virtual terminal APPL definitions
in the Unicenter TCPaccess Telnet Server major node definition in
SYS1.VTAMLST.

3. Change the ACBNAMEs specified in ACCPOOL on the APPOOL macro to
match the new ACBNAMEs specified in the VTAMLST major node
definition.

Telnet Configuration 9–63

Modifying VTAMLST Application Definitions

4. Have SMP/E assemble and link edit module ACCPOOL using the usermod
UMODPOOL in the CNTL data set.

5. Update PARM member APPLUPxx to change ACBNAMEs in the LU
keyword(s) found in that member.

Adding or Deleting Terminal Definitions

This section provides instruction to help you add or delete Unicenter TCPaccess
Telnet Server VLT definitions.

Basically, addition or deletion of terminal definitions requires changing the
VTAMLST APPL definitions and editing, compiling, and linking SAMP member
ACCPOOL, and updating PARM member APPLUPxx.

Note: Because Unicenter TCPaccess Telnet Server ACBNAME entries are case
sensitive, all ACBNAME entries must be all uppercase.

■ If you are using only client commands you must update the SAMP member
ACCPOOL, and execute CNTL member UMODPOOL.

■ If you are using Server Telnet, use ACCPOOL LUs if APPLUPxx is not
implemented, or update APPLUPxx and perform this operator command:
APP REFRESH LUPARM (APPLUPxx)

Follow these steps to add or delete terminal definitions:

1. Change the ACBNAME parameter in the Unicenter TCPaccess Telnet Server
application definitions in SYS1.VTAMLST.

You can activate or deactivate APPL definitions to VTAM.

To inactivate an APPL to VTAM, execute this command:
V NET,INACT,ID=A03ACCES

To activate an APPL to VTAM, execute this command:
V NET,ACT,ID=A03ACCES

2. Add or delete APPL statements in the major node definition for Unicenter
TCPaccess Telnet Server. Remember that the ACBNAME and LU (label)
name for each APPL must be unique.

3. Add or delete the specified ACBNAMEs in the appropriate APPOOL macro
in SAMP member ACCPOOL. You can specify additional APPL statements
in VTAMLST that are not represented by APPOOL macros, but all
ACBNAMEs on APPOOL macros must be defined with APPL statements in
VTAMLST.

4. Have SMP/E assemble and link edit module ACCPOOL using the usermod
UMODPOOL in the CNTL data set.

9–64 Customization Guide

Modifying VTAMLST Application Definitions

5. If necessary, perform an LLA, REFRESH operation to make the new pool
definition active. No IPL or restart of Unicenter TCPaccess Telnet Server is
necessary to get the new definitions to take effect.

6. Update PARM member APPLUPxx to add or delete ACBNAMEs in the LU
keywords found in that member for Server Telnet users.

Configuring to VTAM Applications

You can configure Unicenter TCPaccess so that Server Telnet users automatically
connect to a VTAM application.

With automatic logon in place, the VTAM application menu appears in response
to the TN3270 command. This feature is useful for those sites where normal
access to mainframe applications is through a session manager. By having
network users access the system the same way, a common point of reference for
all users is provided.

There are two ways to implement this feature:

■ Associate it with the TELNET well known port, Port 23.

■ Use a different port number.

If a different port number is used, you must verify that your Client TELNET
package allows a port number to be included in addition to the host name,
and then specify the port number when you issue the TELNET command.

To specify Port 2023, use this command:
TN3270 mvs-host 2023

In the following examples, Simware's SIM3278/VTAM session manager is used
as the application.

Automatic Logon
from Port 23 and the
Standard Connection
Assigned to Port 2023

SERVICE NAME (TELNET) MODULE (T01S3270) PORT (23)
IDLE (480) AUTOLOGON (SIMWARE)
SERVICE NAME (TELNET) MODULE (T01S3270) PORT (2023)
IDLE (480)
APPL NAME (SIMWARE) APPLID (SIM3278)
OPTIONS (3278) PASS (APPL DATA) PORT (23)

Automatic Logon
from Port 2023

SERVICE NAME (TELNET) MODULE (T01S3270) PORT (2023)
IDLE (480) AUTOLOGON (SIM3278)
APPL NAME (SIMWARE) APPLID (SIM3278)
OPTIONS (3278) PASS (APPL DATA) PORT (2023)

Telnet Configuration 9–65

USS Table Support for Server Telnet

As you can see from the examples, the basics are:

■ Include the AUTOLOGON parameter on the SERVICE statement, pointing it
to the NAME parameter of the APPL statement to which you want to
connect

■ Include a PORT parameter on the APPL statement to match the PORT
parameter on the SERVICE statement

In the first example, no additional APPL statement is required for Port 2023
because autologon was not requested for it. Users coming in through this port
receive the standard prompt.

USS Table Support for Server Telnet
Server Telnet supports the use of Session Level USSTAB (Unformatted System
Services Tables) and their associated msg10 screens. The feature enables you to
customize screen access information for VTAM applications that are opened
through Unicenter TCPaccess.

You can use USS tables to customize logon/logoff message text and commands
on a service port basis, including the following types of implementation:

■ You can define a particular port to use for Server Telnet VTAM applications
that is accessed through the USS table facility.

■ You can specify a unique USS table for each port defined.

■ If your site requires more than one USS table as a front-end to VTAM
applications from TELNET, you can define multiple ports defined as Server
Telnet ports, each using a different USS table. This could, for example,
facilitate multiple language environments, device-dependent transactions,
and could be used to enhance security.

Only session-level USS tables are supported. Session-level USS tables define
command formats, message text, and translation tables for VTAM application
end users. Operation-level USS tables are not supported. The operation level
tables process commands received from the VTAM operator.

9–66 Customization Guide

USS Table Support for Server Telnet

USS Table Customization Requirements

Using the USSTAB feature for Unicenter TCPaccess Telnet Server requires that
the data set containing the assembled and linked USS tables be copied into a
library defined on the STEPLIB DD in the Unicenter TCPaccess Telnet Server
start-up JCL, or concatenated to the library containing the load modules in the
STEPLIB DD. If you wish to use the IBM-delivered default Session-level USS
table, ISTINCDT, as a default table, you must make the table available to the
Unicenter TCPaccess Telnet Server job or started task.

Unicenter TCPaccess Telnet Server provides two session-level default tables:

■ T01USS01, used in line-mode

■ T01USS02, used in full-screen mode (when the START3270 option is used)

The appropriate table is used as a default whenever ISTINCDT is unavailable,
and is also used when USSTAB is not configured. Source code for these tables is
available in the SAMP library and can be modified for your installation.

If you connect to a port with USSTAB and the table does not exist, you will
access either the T01USS01 or T01USS02 table, depending on the presence of the
START3270 parameter. If you connect to T01USS01, the LOGON command for
direct access to TSO returns UNRECOGNIZED COMMAND.

Additionally, USSTAB parameter settings are required in the SERVICE and
TELNET statements of the configuration. In some cases, parameter entries are
also required in the APPL statement of configuration. For details, see Protocol
Service Segment (SERVICE) .

Telnet Configuration 9–67

USS Table Support for Server Telnet

Using LOGMODE with USSTAB

If your USS tables contain LOGMODE(s) that you want passed to VTAM
applications, or if you want to support the LOGMODE parameter on the
LOGON command, you must associate the LOGMODE(s) with the appropriate
terminal type(s) by means of the TERMPROF statement.

1. Define a TELNET statement for the Server Telnet port that specifies a
TERMPROF group.

2. Within this TERMPROF group, define TERMPROF statements that associate
the LOGMODE(s) from the USS table(s) with the appropriate terminal
type(s).

When a LOGMODE is supplied, either in a USS table through the USSCMD
macro, or as part of a LOGON command, Server Telnet scans the
TERMPROF group to see if the LOGMODE and the negotiated terminal type
can be matched. If a match is found, the LOGMODE is passed to the VTAM
application, otherwise it is ignored.

In the following example, D4A32782 is the default logmode for the terminal
type IBM-3278-2. The next entry defines CICSM2 as a valid logmode for the
same terminal type, thus allowing Server Telnet to use that logmode when
specified on a USS table, and terminal type IBM-3278-2 is negotiated.
SERVICE NAME (TELNET) MODULE (T01S3270) PORT (23) USSTAB (USSTABLE)
START3270
*
TELNET PORT (23) PASS (DATA) TERMPROF (GROUP01)
*
TERMPROF GROUP (GROUP01) LOGMODENAME (D4A32781)
BUFFERSIZE (256) TERMTYPE (IBM-3278-1)
TERMPROF GROUP (GROUP01) LOGMODENAME (D4A32782)
BUFFERSIZE (256) TERMTYPE (IBM-3278-2)
TERMPROF GROUP (GROUP01) LOGMODENAME (CICSM2)
BUFFERSIZE (256) TERMTYPE (IBM-3278-2)

9–68 Customization Guide

USS Table Support for Server Telnet

Preparing USS Tables

No special preparation is required to use USS tables with Unicenter TCPaccess
Telnet Server, with the exception that FORMAT=DYNAMIC must be specified
on the USSTAB macro. Standard rules for command and parameter substitution
are followed. Only the APPLID, DATA and LOGMODE parameters are passed
to the VTAM logon; all other parameters are parsed and ignored.

Note: When USSMSG BUFFER= is used, there are generally two types of buffers
that can be defined:

■ SNA, which uses the new line character (X'15') to set up the screen

■ Non-SNA, which uses 3270 command codes

If your USS table uses a non-SNA-format buffer, you must code START3270 on
the SERVICE statement for that port. If your table uses an SNA-format buffer, it
is recommended that you do not code START3270, so that the message will be
displayed in linemode prior to 3270 negotiation with the client tn3270. If a USS
table with an SNA-format buffer is used in full-screen mode (START3270),
Unicenter TCPaccess Telnet Server attempts to convert the message to a valid
3270 data stream before sending it to the client TN3270 according to the
following rules:

■ An erase-write command, write-control-character, and set buffer address to
row one, column one, precedes the buffer.

■ Each new line character (X'15') is replaced with a set buffer address
command. The first new line is replaced with SBA row two, column one; the
second with SBA row three, column one, and so on. The substitution
assumes a model 4 terminal (this works for models 2 and 3 as well,
providing the number of rows in the buffer does not exceed the maximum
for the terminal type).

■ The buffer is followed with a write structured field command specifying
unprotect and insert cursor.

Refer to the IBM VTAM: Resource Definition Reference for additional information
on coding USS tables.

Telnet Configuration 9–69

USS Table Support for Server Telnet

USSMSG Variable
Data Substitution

Unicenter TCPaccess Telnet Server substitutes the following variables in USS
table messages according to the rules documented in the VTAM: Resource
Definition Reference.
@@@@@@DATE The current date is substituted in format mm/dd/yyyy.

@@@@DATE The current date is substituted in format mm/dd/yy.

@@@@TIME The current time is substituted.

@@LUNAME The LUname for the session is substituted. In order for this
parameter to be used, PRELU must be coded on the
SERVICE statement.

Additionally, the following substitution is made:

@@@@VRM The current release identification is substituted in

format Vv.r.m

where:
v version
r release
m maintenance

Example: V5.2.0.

@@@@@@IPADDRESS

@@IPADDR

The IP address of the TN3270 client is displayed in
standard dotted-decimal notation.

Since the IP address occupies 15 positions, we
recommend you use the first form to prevent overrun.
The second form is provided for compatibility with
systems that have leading zeros removed.

For the second form, 149.048.003.170 would be shown
as 149.48.3.170.

Using NETSTAT,
SYSSTAT, and ACTEST
with a Full-Screen USS
Table

The NETSTAT, SYSSTAT, and ACTEST services, as well as the intrinsic services
(such as NEWS and HELP) are not supported in full-screen (START3270) mode.

To use these services with START3270, you can logon to the Unicenter
TCPaccess Telnet Server VTAM primary ACBNAME (the name on the
ACBNAME parameter of the HOST statement) and specify the loopback IP
address and Server TELNET port as data to pass to the application.
logon applid (a03acca) data ('127.0.0.1,23')

9–70 Customization Guide

USS Table Support for Server Telnet

This causes Server TELNET to logon to Unicenter TCPaccess in loopback mode.
The port used must not have START3270 specified on the SERVICE statement,
and must have APPL statements coded for any services to be used. At this point,
you can enter the name of the service desired, and the service is invoked in
linemode. When you are finished, enter END to return to the linemode prompt,
then END again to end the VTAM session and return to the full-screen display.

Additionally, you can enter ACTEST directly by coding:
logon applid (a03acca) data (;vtamtest)

If desired, the USS table can be updated to provide access to these services. For
example:
NETSTA USSCMD CMD=NETSTAT,REP=LOGON,FORMAT=PLI
USSPARM PARM=APPLID,DEFAULT=A03ACCA
USSPARM PARM=P1,REP=DATA,DEFAULT='127.0.0.1,23'
*
ACTEST USSCMD CMD=ACTEST,REP=LOGON,FORMAT=PLI
USSPARM PARM=APPLID,DEFAULT=A03ACCA
USSPARM PARM=P1,REP=DATA,DEFAULT=';VTAMTEST'

USS Table Server
Telnet Operation

Once a port specified with the USSTAB option is selected through Server
Telnet, the following operations are processed:

■ The msg10 screen displays for an initial logon menu and welcome messages

■ Optionally, the date, time, IP address, and preselected LU name are applied

■ Logon/logoff commands can be interpreted for a specific port

■ VTAM application sessions are established and maintained

■ Upon termination of a VTAM application, the original msg10 logon
menu/welcome messages display

USS Table
Performance and
Operations Notes

Unicenter TCPaccess Telnet Server attempts to minimize overhead by
preprocessing the USS tables at initialization time. At TELNET connection time,
Unicenter TCPaccess Telnet Server loads the USS tables, and internally builds
APPL statements.

For USS table processing only, if an entered command was not defined, there is
no attempt to invoke it as an APPLID is made.

Translation Table
Processing

Because the USS tables are processed at initialization time, translation tables
defined within USS tables are not used to translate terminal input data. Special
processing can be handled by the defaults coded on the specific TELNET
configuration statement(s).

Telnet Configuration 9–71

USS Table Support for Server Telnet

Invoking USSTAB
Server Telnet

You invoke USSTAB Server Telnet by entering TN3270 from a remote client to
the port defined with the USSTAB option in Unicenter TCPaccess Telnet Server.
TN3270 138.42.224.13 1124

Trying...
Connected to 138.42.224.13

Next, the logon/welcome appears as a typical VTAM application logon screen.

9–72 Customization Guide

Chapter

10 TelnetRTM Configuration

This chapter describes TelnetRTM configuration including RTMCFGxx
Customization, which describes how to configure the RTMCFGxx configuration
member of the PARM data set.

TelnetRTM provides a central repository for Telnet response time measurement
(RTM) data. A single instance of TelnetRTM may contain RTM data for one or
more Telnet servers, which may in turn be using one or more TCP/IP servers,
either Unicenter TCPaccess or IBM's TCP/IP. The Telnet servers accumulate the
RTM data and store it in the TelnetRTM repository. The RTM data in this
repository is then queried and reported on by both Unicenter NetSpy and the
Unicenter TCPaccess NETSTAT TELNET command processor.

TelnetRTM executes within an IFS address space and is implemented as an IFS
task group with task group identifier RTM. The component is started using the
IFS START command and is stopped directly using the IFS STOP command or
indirectly during the termination of the IFS address space. The IFS START and
STOP commands are described in detail in the System Management Guide.

If the RTM task group is started in a separate IFS address space than one or more
Telnet servers, then the subsystem identifier assigned to the IFS address space in
which the RTM task group is executing must be specified in the GLOBAL
statement of the APPCFGxx member for the Telnet servers. Refer to the chapter
"Global Application Parameters" for more specific information.

It is recommended that the IFS address space executing the RTM task group be
started before any IFS address space that is executing a Telnet server. Failure to
follow this recommendation may result in RTM data being unavailable for some
Telnet sessions.

TelnetRTM Configuration 10–1

RTMCFGxx Customization

RTMCFGxx Customization
The RTMCFGxx member in the PARM data set specifies the configuration
parameters for the RTM task group.

Specify the following in the STARTxx member of the PARM data set to start the
RTM task group:

START RTM

To specify an RTMCFGxx member other than the default of RTMCFG00, specify
CNFG(xx) after the START RTM command, where xx is the two character suffix.
To start the RTM task group with no configuration parameters and accepting all
default values, specify CNFG(NONE) after the START RTM command.

POOLDEF Statements
The POOLDEF statement is used to define pools of control blocks required by the
RTM task group. Refer to RTMCFGxx Control Block Pools in the chapter
“Defining Control Block Pools (POOLDEF Statement)” for the pools that you can
define for RTMCFGxx and the default characteristics of those pools.

The pool definitions specify an initial amount, an expansion amount, a
contraction amount, and a minimum amount to limit contraction. You can adjust
these numbers to minimize expansion and contraction and improve efficiency.
Refer to POOLDEF Statement Syntax in the chapter “Defining Control Block
Pools (POOLDEF Statement)” for more specific information.

Example

The example below shows a sample configuration for the RTM task group

* TCPaccess RTM task group configuration *

* Storage pool configuration parameters

POOLDEF NAME(RTPB)
 INITIAL(4)
 MINIMUM(8)
 EXPAND(4)
 CONTRACT(4)

POOLDEF NAME(RTOB)
 INITIAL(32)
 MINIMUM(256)
 EXPAND(64)
 CONTRACT(128)

10–2 Customization Guide

Chapter

11 Configuring FTP

This chapter provides guidelines to help you customize Unicenter TCPaccess for
your site.

The following topics are discussed in this chapter:

■ Error! Reference source not found.—Describes how to use the SERVICE
statement to configure your FTP Statement

■ FTP Configuration Parameters—FTP Statement—Describes how to use the
FTP statement to define the configuration parameters for the server

■ Generic Attributes Table (GAT)—Describes how to use the Generic
Attributes Table (GAT) statement to specify data set attributes by data set
type to be used by the FTP site command

■ FTP Support for SMF Activity Reporting and User Accounting—Describes
how account data is defined on logon and exit from FTP

■ Server FTP JES Support—Describes how JES is supported in FTP

Configuring FTP 11–1

The File Transfer Protocol (FTP) Service Statement

The File Transfer Protocol (FTP) Service Statement
Defines the user-level services provided by Unicenter TCPaccess and the well-
known port numbers. The most common ones are TELNET, VTAMAPPL, FTP,
LPR, and USMTP/SSMTP. Refer to the chapter “Protocol Service Segment
(SERVICE)” for a complete description of the SERVICE statement.

FTP SERVICE Statement Syntax
SERVICE NAME (FTP)

 MODULE (FTPS)
 PORT (number)
 [QLISTEN (number)]
 [TCP | UDP]

NAME (FTP) Provides the FTP server.

Default: None.

MODULE (FTPS) Specifies the name of the primary load module (one- to eight-characters) started
as the user-level protocol process (ULPP).

Default: None.

PORT (number) Specifies the well-known port number for the ULPP (1:4095).

Default: None.

QLISTEN (number) Specifies the number of entries allocated in the Queued Listen Table. This value
indicates the number of unspecified (wild) listens to queue for determination as
to whether the connection should be accepted or rejected.

TCP | UDP Specifies the higher-level protocol module that provides the transport service for
the ULPP.

Note: The only valid UDP service is UDPSERV.

Default: TCP.

Example

Standard Server FTP (Port 21)
SERVICE NAME(FTP)

 MODULE(FTPS)
 PORT(21)
 TCP

11–2 Customization Guide

http://www.buginword.com
http://www.buginword.com

FTP Configuration Parameters—FTP Statement

FTP Configuration Parameters—FTP Statement
Defines the configuration parameters for the File Transfer Protocol (FTP)
server.

FTP Statement Syntax
FTP [ABORT | NOABORT]
 [ACCOUNT (userid account)]
 [ACCTREQ | NOACCTREQ]
 [APPEND | NOAPPEND]
 [AUTORECALL | SITERECALL | NORECALL]
 [CD | NOCD]
 [CHARSET (sbcs dbcs { CHAR | DBCS | MIX })]
 [CONDDISP (CATLG | DELETE)]
 [DATACLOSE (time)]
 [DATAIDLE (number) | IDLE (number)]
 [DATAOPEN (time)]
 [DATAPORTTOS (tos_value)]
 [DATASETMODE| DIRECTORYMODE]]
 [DEBUG]
 [DEFGAT (name)]
 [DEFPRFX (TSOPREFIX | NONE | USERID | userid)]
 [EXPDTCHK | NOEXPDTCHK]
 [GUEST (logonid password)]
 [HSM (number1 number2)]
 [KEEPALIVETIMER (number)]
 [ISPFENQ | NOISPFENQ]
 [ISPFRES | NOISPFRES]
 [JESPUTGETTO (time)]
 [JESFILTER (OWNERID | USERID)]
 [LABEL (BLP | NOBLP, NL | NONL)]
 [LISTFMT (OLD | IBM | SHORT)]
 [LKEDRES | NOLKEDRES]
 [MIGRATEVOL (volser)]
 [MOUNT (def_wait_time, max_wait_time)]
 [NDAB (number1 number2)]
 [NLSTCASE (UPPER | LOWER)]
 [NOPERSIST | PERSIST]
 [OBUF (numbuf bufsize max_numbuf max_bufsize)]
 [OUTLIM (number)]
 [OVERWRITE | NOOVERWRITE]
 [PAD (B | O | Z | C | hex1 [B | O | Z | CC | hex2])]
 [PORT (number)]
 [RELEASE | RLSE | NORELEASE | NORLSE]
 [SITEALLOC (NEW | ALL)]
 [SITEREPLY (200 | 500)]
 [SITEOVERWRITE]
 [STRIP | NOSTRIP]
 [TABS (number)]
 [TRANTBL (tranname)]
 [UNIT (name)]
 [UMASK (000)
 [WRAPRECORD | NOWRAPRECORD]
 [VOLUME (volser)]

Configuring FTP 11–3

FTP Configuration Parameters—FTP Statement

GUEST (logonid password)

Specifies the logon user ID and password in sublist notation (one- to eight-
characters each) used for anonymous logons. This value is passed to the security
system in lieu of the default user ID, ANONYMOUS, and the default password,
GUEST.

Default: (GUEST XXXXXXXX).

ABORT | NOABORT Selects data connection termination when a permanent I/O (exception) error is
detected during data transfer.

NOABORT Causes a TCP FIN to be sent

ABORT Causes a TCP RESET

Use caution when selecting ABORT because some remote hosts close the control
connection as well as the data connection.

Default: NOABORT.

ACCOUNT (userid account)

Specifies the user ID and account number in sublist notation (one- to eight-
characters each) to use for FTP overhead accounting.

Default: (OVERHEAD 0000).

ACCTREQ | NOACCTREQ

Specifies whether FTP is to prompt for account data at login.

NOACCTREQ FTP does not require account data at login.

ACCTREQ FTP prompts for account data at login.

Default: NOACCTREQ.

APPEND | NOAPPEND

Specifies whether an APPEND operation to an existing MVS data set is allowed.

Default: APPEND.

11–4 Customization Guide

FTP Configuration Parameters—FTP Statement

AUTORECALL | SITERECALL | NORECALL Specifies the HSM recall environment.

AUTORECALL Migrated data sets are recalled automatically when
referenced.

SITERECALL User is required to issue the SITE RECALL command
before a migrated data set can be recalled.

NORECALL All requests for migrated data sets fail.

Note: NORECALL and HSM() are mutually exclusive.

Default: AUTORECALL.

CD | NOCD Specifies whether to allow directory commands.

Certain client FTP processes (for example, Novell LAN workplace) do not work
properly with directory commands enabled.

Default: CD.

CHARSET (sbcs dbcs { CHAR | DBCS | MIX })

Specifies single and double byte character set, and default server translation
mode for the data transfer port.

sbcs Defines the single byte character set used for ASCII to
EBCDIC and EBCDIC to ASCII single byte translation.

dbcs Defines the double byte character set used for ASCII to
EBCDIC and EBCDIC to ASCII double byte translation.

CHAR Defines the default character translation mode as single
byte.

DBCS Defines the default character translation mode as double
byte.

MIX Defines the default character translation mode as single
byte and/or double byte.

Use the TRANTBL parameter for the control port.

For more information about special translate tables, see the chapter “Translation
Tables.”

Default: ENGLISH single byte character set. No double-byte character set CHAR
mode.

Configuring FTP 11–5

FTP Configuration Parameters—FTP Statement

CONDDISP (CATLG | DELETE)

 Specifies the default conditional disposition of new data sets when a STOR
operation fails.

 Default: CATLG.

DATACLOSE (time) Specifies the time, in seconds, the server waits for a data connection to close.

Minimum value = 30 seconds.

Maximum value=86,340 (1439 minutes).

Default: 60.

DATAIDLE (number) | IDLE (number)

Specifies the maximum amount of time (60:86340), in seconds FTP waits for
transfer of one buffer (see the descriptions of the IBUF and OBUF operands in
the FTP Statement. This is used to detect a failed remote host during data
transfer.

Default: Six.

DATAOPEN (time) Specifies the time, in seconds, the server waits for a data connection to open.

Minimum value = 30 seconds.

Maximum value=86,340 (1439 minutes).

Default: 1800.

DATAPORTTOS (tos_value)

Specifies a value to use as the TOS (type of service) in the IP header of FTP traffic
on the data port.

Aliases: DPTOS, TOS

Range: 0 – 255

Default: Unless the IP statement contains an overriding TOS default.

DATASETMODE | DIRECTORYMODE

Specifies whether directory output (LIST/NLST) appears in data set mode or
directory mode.

Default: DATASETMODE.

11–6 Customization Guide

FTP Configuration Parameters—FTP Statement

DEBUG Activates the debugging option to provide tracing information on commands
submitted during the FTP session.

Note: You can use the DEBUG option interchangeably with the TRACE and
DEBUG commands.

DEFGAT (name) Specifies a data set type in a GAT (Generic Attributes Table) statement to use as a
default attribute entry. Read the description of the GAT statement.

Default: None.

DEFPRFX (TSOPREFIX | NONE | USERID | userid)

Specifies installation default prefix (high level qualifiers) when data sets are not
fully qualified.

TSOPREFIX Specifies that the TSO prefix from the security system's
database be used as the default working directory.

 Note: Use this option only if the security system supports
TSO profile information (specifically, the data set name
prefix) and supports the SAF interface to retrieve it.

NONE Prefixing is not performed.

USERID User’s sign on ID is used as a prefix.

userid Installation defined character string.

Default: USERID.

EXPDTCHK | NOEXPDTCHK

Specifies that FTP perform expiration date checking (EXPDTCHK).
NOEXPDTCHK specifies that you do not want date checking performed.

Note: If you do not set up an automated response to IBM WTOR IEC507D, you
should code EXPDTCHK or let it default to that value. Otherwise, Unicenter
TCPaccess hangs until WTOR IEC507D receives a reply from an operator.

Default: EXPDTCHK.

Configuring FTP 11–7

FTP Configuration Parameters—FTP Statement

GUEST (logonid password)

Specifies the logon user ID and password in sublist notation (one- to eight-
characters each) to use for anonymous logons. This is passed to the security
system in lieu of the default user ID, ANONYMOUS, and the default password,
GUEST.

Default: (GUEST XXXXXXXX).

HSM (number1 number2)

Specifies the default and maximum wait times for an HSM recall.

number1 Defines the default wait time, in minutes, an HSM recall
has to complete before the request is cancelled. The integer
value specified in the SITE RECALL command overrides
the default.

number2 Defines the maximum amount of time in minutes an HSM
recall will wait before the request is cancelled. This number
is used to validate the integer specified in a SITE RECALL
command.

 Note: Must not exceed 1439.

 See the FTP Statement for information about timeouts and FTP to Tape.

Default: (5 1439).

KEEPALIVETIMER (number)

Specifies the time interval, in minutes, for TCP keepalive packets on the control
connection when Unicenter TCPaccess is the TCP/IP provider.

Alias: KATIMER

Range: 0 (no keepalive) - 1439 (1439 min)).

Default: Zero (do not use keepalive).

11–8 Customization Guide

FTP Configuration Parameters—FTP Statement

IBUF (numbuf bufsize max_numbuf max_bufsize)

Specifies in sublist notation the number of network input buffers (numbuf) and
the buffer size (bufsize) to use as defaults, and the maximum buffer number
(max_numbuf) and buffer size (max_bufsize) that can be specified on the SITE
command.

Note: If the maximum values are not specified or are set to zero, the SITE IBUF
command is not permitted.

Each number must not exceed 32767.

Default: 16 2048.

ISPFENQ | NOISPFENQ

Specifies that the ISPF enqueue facility be activated (ISPFENQ) or deactivated
(NOISPFENQ).

See Generic Attributes Table (GAT) for more information to support PDS
enqueue.

Default: NOISPFENQ.

ISPFRES | NOISPFRES Enables (ISPFRES) or disables (NOISPFRES) the RESERVE logic for the SPFEDIT
ENQ, if the volume on which the PDS resides is shared by Multiple Systems
(UCB shared bit ON). This ensures data integrity while the PDS you are
accessing is simultaneously accessed by an ISPF user from another system.

See Generic Attributes Table (GAT) for more information to support PDS
enqueue.

Default: NOISPFRES.

JESPUTGETTO (time) Specifies time, in seconds (0:86400), the server waits before a PUTGET (automatic
retrieval of a submitted job) time out occurs.

Default: 600 (10 minutes).

Configuring FTP 11–9

FTP Configuration Parameters—FTP Statement

JESFILTER (OWNERID | USERID)

Specifies filter to limit user access to (OWNERID|USERID) batch jobs.

OWNERID Only jobs that have an owner ID of the logon user.

USERID Only jobs that have a jobname of user ID plus one
character.

Default: OWNERID.

LABEL (BLP | NOBLP, NL| NONL)

Controls the types of label processing permitted.

BLP Bypass label processing permitted.

NOBLP Bypass label processing not permitted.

NL Non-label tapes permitted.

NONL Non-label tapes not permitted.

Default: NOBLP, NONL.

LISTFMT (OLD | IBM | SHORT)

Specifies whether output from the data set LIST command is in the old
TCPaccess format, in the IBM-standard format, or in a shortened IBM-compatible
format.

The short format leaves out data set extents and tracks allocated, but improves
LIST response time.

Certain PC-based client FTP packages expect the LIST output from a host
configured as OS/MVS to be in standard IBM format.

Default: OLD.

11–10 Customization Guide

FTP Configuration Parameters—FTP Statement

LKEDRES | NOLKEDRES

Enables (LKEDRES) or disables (NOLKEDRES) the RESERVE logic for the
SYSIEWLP ENQ, if the volume on which the PDS resides is shared by Multiple
Systems (UCB shared bit ON). This ensures data integrity while the PDS you are
accessing is simultaneously accessed by the linkage editor from another system.

See Generic Attributes Table (GAT) for more information to support PDS
enqueue.

Default: NOLKEDRES.

MIGRATEVOL (volser)

Specifies the default volume serial number for migrated data sets.

MOUNT (def_wait_time, max_wait_time)

Default: MIGRAT.

MOUNT (def_wait_time, max_wait_time)

Indicates tape mounts are supported if the def_wait_time parameter has a non-
zero value.

Note: Omission of this parameter, or specifying MOUNT(0), turns off tape
support.

def_wait_time Indicates the default time in minutes that FTP allows for
any operation involving operator intervention on a tape
unit.

max_wait_time Indicates the highest value permitted on the SITE
MOUNT() command.

When a tape drive unit is not available FTP retries the request every 30 seconds
until this time expires.

See FTP Statement for more information about timeout considerations.

Default: (0,1439).

Configuring FTP 11–11

FTP Configuration Parameters—FTP Statement

NDAB (number1 number2)

Specifies the number of DASD (DISK) buffers used by FTP for reading or writing
disk data sets by default (number1), and the maximum buffer number permitted
on the SITE NDAB command (number2)

Note: If number2 is not specified or is set to zero, the SITE NDAB command is
not permitted. The size of each buffer is the block size of the data set. At least two
should be specified to overlap I/O. MVS has an upper limit of 99 buffers.

Default: Four.

NLSTCASE (UPPER | LOWER)

Specifies whether the output from an NLST command is in upper- or lowercase.
If LOWER is specified and the data set or member list is part of the current
directory, the names are returned in lower case.

NLSTCASE(LOWER) is supplied to facilitate MGET functions from FTP clients
on systems that use lowercase file names.

Default: UPPER.

NOPERSIST | PERSIST Specifies whether SITE parameters will be reset following data transfer.

If you use:

NOPERSIST All SITE parameters are reset after each data transfer.

PERSIST All SITE parameters remain in effect until explicitly
changed via subsequent SITE commands, or reset with
SITE RESET.

Default: NOPERSIST.

OBUF (numbuf bufsize max_numbuf max_bufsize)

Specifies in sublist notation the number of network output buffers (numbuf) and
the buffer size (bufsize) to use as defaults, and the maximum buffer number
(max_numbuf) and buffer size (max_bufsize) that you can specify on the SITE
command.

If the maximum values are not specified or are set to zero, the SITE OBUF
command is not permitted.

Each number must not exceed 32767.

Default: 16 2048.

11–12 Customization Guide

FTP Configuration Parameters—FTP Statement

OUTLIM (number) Specifies the maximum number of records that can be submitted to the MVS
internal reader in one file transfer (SITE SUBMIT).

This parameter is used for the OUTLIM parameter to JES.

Default: 250000.

OVERWRITE | NOOVERWRITE

Specifies whether a file transfer to an existing MVS data set can write over that
data set.

Default: OVERWRITE.

PAD (B | O | Z | C | hex1 [B | O | Z | CC | hex2])

Pad character(s) to pad network records or lines to fixed-length logical records
when data is:

■ Stored (via STOR or APPE)

■ Deleted from fixed- length logical records

■ Retrieved (via RETR)

The first value is the sbcs pad character; the second value is the dbcs pad
character.

B Pad with blanks.

O Pad with all ones.

Z Pad with zeros.

C A one-byte character other than B, O, or Z (sbcs).

CC A two-byte character other than B, O, or Z (dbcs).

hex1 Any valid one-byte hex value (sbcs), represented by two
hex digits.

hex2 Any valid two byte hex value (dbcs), represented by four
hex digits.

Default: (B Z)

PORT (number) Specifies the port for the control connection. Normal usage is port 21.

Default: 21.

Configuring FTP 11–13

FTP Configuration Parameters—FTP Statement

RDW/NORD Specifies whether (Record Descriptor Word) RDWs is sent as data for
RECFM=VB and RECFM=VBS files.

 If RDW is selected, the RDW is sent for binary, ASCII, or EBCDIC transfers.

Default: NORDW.

RELEASE | RLSE | NORELEASE | NORLSE

Specifies whether unused space in an MVS data set being written to should be
released.

Default: RELEASE.

SITEALLOC (NEW | ALL)

Specifies whether certain SITE command data set allocation parameter is applied
to all data sets or only to newly allocated data sets.

If NEW is specified, the SITE command parameters VOLUME, UNIT, LRECL,
BLKSIZE, RECFM, and DCBDSN will be applied only to newly created data sets.

Default: ALL.

SITEREPLY (200 | 500)

Specifies whether a 200 or a 500 reply code is used when errors occur in
processing a SITE command.

Default: 500.

SITEOVERWRITE SITEOVERWRITE specifies that files will not be overwritten unless a SITE
OVERWRITE command is received.

STRIP | NOSTRIP Specifies whether pad characters is stripped from fixed-length logical records
when data is retrieved (via RETR).

Default: STRIP.

TABS (nn) Specifies the tab skip value, where nn is a digit 0-25.

Default: Eight.

11–14 Customization Guide

FTP Configuration Parameters—FTP Statement

TRANTBL (tranname) Specifies the translate table load module that the control port will use.

tranname can be one of the following:

ENGLISH
DANISH
FCANADA
FRENCH
GERMAN
GSWISS
ITALIAN
SPANISH
SWEDISH

Use the CHARSET parameter for the data port translation.

Default: Translate table specified by TRANTBL parameter on GLOBAL
statement in APPCFGxx configuration member.

UMASK (000) Allows you to specify a three-character octal number for umask values. Sets the
file access defaults for the session.

If this value is not specified, it defaults to 022.

Note: If no SITE commands are issued and this is specified in APPCFGxx, this is
the session default.

UNIT (name) Specifies a generic unit name of default direct access volumes to be used for
dynamic allocation.

Default: None.

WRAPRECORD | NOWRAPRECORD

Specifies whether, when storing, the server wraps or truncates network records
that exceed LRECL.

Default: WRAPRECORD

VOLUME (volser) Specifies the default volume serial.

Default: None.

Configuring FTP 11–15

FTP Configuration Parameters—FTP Statement

FTP Statement Usage Notes

FTP Parameters of
Note

You may need to change these parameters on the FTP statement:

GUEST If you want to allow anonymous/guest capability, enter a valid ID
and password combination that is known to your security system.

ACCOUNT If you are implementing FTP accounting, enter a user ID and
account number for use in overhead accounting.

UNIT Enter a generic unit name to use when FTP creates new data sets.

CHARSET Enter the default FTP character translation table to use. See
Invoking USSTAB Server Telnet for a list of the available tables.

ACCTREQ Required for FTP accounting—prompts user for the account
number.

NOCD If you use Novell LAN Workplace, you must disable the
CD/CWD facility.

Customizing the FTP
Greeting

You can customize the Server FTP greeting for your site. When you sign on to
Server FTP, this is the normal display response:
230 Logged in - Host nnn.nnn.nnn.nnn. User uuuuuuuu

The system administrator can implement a custom login greeting by placing a
member named FTPGREET in the HELP data set. Unicenter TCPaccess searches
for this member on the first login to the FTP server after startup. If it is found, its
contents are displayed after each successful login to Server FTP.

This is how the greeting appears:
230--- GREETINGS ---

 text_of_FTPGREET_member
230 Logged in - Host nnn.nnn.nnn.nnn. User uuuuuuuu

Anonymous Logons Server FTP supports anonymous logon using the standard
ANONYMOUS/GUEST user name and password.

The logon ID and password provided via the GUEST operand is the user
ID/password combination supplied to the security system for such logons. In
other words, network users logging on to Server FTP using the
ANONYMOUS/GUEST logon procedure assume the identity and privileges of
the user ID specified in the GUEST operand.

Note: If anonymous logon is used, the user must be defined to your security
system with specific access privileges.

11–16 Customization Guide

FTP Configuration Parameters—FTP Statement

Timing Out FTP will timeout a data transfer request if the remote does not complete the
data connection in a certain time. If the remote is another MVS system using
tapes, or recalling a data set, it requires a tape mount on the remote system
before it can complete the data connection. For this reason, FTP uses the longer
of MOUNT or HSM times, or 30 minutes if neither tape support nor HSM
support is configured.

You should also consider the problem of a remote system using tape data sets
when configuring DATAIDLE time. If a remote is reading a multivolume data
set, for instance, it may have to stop the data transfer between volumes while the
next tape is mounted. The DATAIDLE time may expire while this is happening.

For previous users of IBM TCP/IP for MVS FTP Server, these configuration
parameters must be specified for product transparency:
FTP SITEALLOC(NEW)
 DEFPRFX(TSOPREFIX)
 SITEREPLY(200)
 DATACLOSE(120)
 DATAIDLE(120)
 DATAOPEN(60)
 TABS(0)
 PERSIST

SMS Control Via
GLOBAL Statements

When the SMS parameter is specified on the GLOBAL statement of the
APPCFGxx member, the Server FTP does not supply default data set attributes.
Instead, it gives SMS the ability to control the allocation of data sets. The Server
FTP only provides DCB parameters that the system administrator specified on
the FTP DEFGAT statement, or that the user has explicitly specified with the
SITE command.

Configuring FTP 11–17

FTP Configuration Parameters—FTP Statement

For example, if SMS is specified, only allocation parameters from the FTP of
DEFGAT statements or the SITE command are used for dynamic allocation of
new data sets. If SITE RESET is sent, the values default to either your
APPCFGxx-supplied values or to the specified defaults. See the following
diagram for more details.

Does the data set exist? Yes Use existing DCB
parameters

Has SMS been specified? No

Have any data set
attributes been specified
on the FTP statement?

No

Use parameters from
FTP

Has a DEFGAT been
coded?

Use DCB parameters
from DEFGAT

Has the FTP user issued
an FTP SITE command?

Issue the dynamic
allocation

Yes

Use data set
attributes from SITE

Verify SMS has set
many/all of the DCB
parameters

Supply default data
set attributes

Yes

Yes

Yes

No

No

No

11–18 Customization Guide

FTP Configuration Parameters—FTP Statement

Buffers The IBUF and OBUF values are negotiated by FTP with the API before the data
port is opened. If the values exceed the API maximum values as specified in the
TCP Statement, they are reduced. For instance, the actual buffer space that is
allocated for the receiving data from the network is equal to the lower of the
TCP MAXRCVBUF value, or to the following:
lower(FTP IBUF(numbuf), TCP MAXQRECV)

x lower(FTP IBUF(bufsize), TCP MAXLTRCV)

PDS Enqueue
Parameters

Use the PDS enqueue parameters ISPFENQ, ISPFRES, and LKEDRES to comply
with the MVS/ISPF conventions that ensure data set integrity when opening
partitioned data sets in UPDATE mode.

With this feature, FTP provides for simultaneous access to a Partitioned Data
Set (PDS) during data transfer. That is, a user can browse or edit any members
in the PDS while an FTP data transfer is in progress.

The PDS enqueue mechanism is activated whenever you execute an FTP STOR,
APPEND, DELETE, or RENAME operation on members of PDS or PDS/E data
sets. This mechanism enables concurrent FTP users to simultaneously access data
stored as members of the same PDS.

Normal member locking mechanisms are in place. If a member is open in edit
mode and FTP attempts to access it, an error message is sent to the user with a
notice that the member is in use.

The PDS enqueue mechanism follows the conventions described in the IBM
document Interactive System Productivity Facility (ISPF) Planning and Customizing.
This information is in Appendix B of Version 4 Release 1 for MVS.

Configuring FTP 11–19

FTP Configuration Parameters—FTP Statement

FTP Examples

Example 1 This example shows the usage of the FTP statement:
FTP GUEST(DEMO1 NOPASSWD)
 ACCOUNT(ACCES 0000)
 UNIT(SYSDA)
 IBUF(10 2048)
 OBUF(10 2048)
 ACCTREQ
 NORECALL
 NDAB(8)
 OUTLIM(400000)

Example 2 This example shows how to configure the FTP statement to support PDS
Enqueue.
FTP ISPFENQ
 ISPFRES
 LKEDRES

Example 3 This example demonstrates the usage of additional parameters.
FTP GUEST(GUEST XXXXXXXX)
 ACCOUNT(OVERHEAD 0000)
 PORT(21)
 IBUF(20 2048)
 OBUF(20 2048)
 LABEL(NOBLP NONL
 MOUNT(def_wait_time, max_wait_time)
 DEFGAT(FILE)
 AUTORECALL
 PAD(B B)
 UNIT(SYSALLDA)
 CHARSET(ENGLISH)
 TRANTBL(ENGLISH)

11–20 Customization Guide

Generic Attributes Table (GAT)

Generic Attributes Table (GAT)
The Generic Attributes Table (GAT) statements are a series of predefined
attributes for certain types of file transfers. Use the GAT statement to specify
data set attributes by data set type for use by the FTP SITE command.

You must retain all the GAT statements distributed because Unicenter TCPaccess
expects them. New ones can be added and referenced in the FTP SITE parameter
or the DEFGAT parameter of the FTP statement. The FTP SITE command is
documented in the User Guide.

GAT Statement Syntax
GAT TYPE (name)
 [BLKSIZE (number)]
 [COMPACT]
 [CONDDISP (CATLG | DELETE)]
 [DATACLAS (data_class_name)]
 [DCBDSN (data_set_name)]
 [EXPDT (expiration_date) | RETPD (retention_period)]
 [ISPFENQ | NOISPFENQ]
 [ISPFRES | NOISPFRES]
 [LABEL (type)]
 [LKEDRES | NOLKEDRES]
 [LRECL (number)]
 [MANAGEMENTCLAS (management_class_name)]
 [PARALLELMOUNT]]
 [PDSE]
 [PRIVATE]
 [RECFM (F | FA | FB | FBA | V | VB | VM | VS | VBA | VBS | VBSA | U)]
 [SPACE ({ CYL | TRK | BLK } ([pri] [sec] [dir]))]
 [STORCLAS (storage_class_name)]
 [UNIT (unitname)]
 [UNITCOUNT (count)]
 [VOLUME (volser)]

TYPE (name) Specifies a data set type (one- to eight-characters) corresponding to the string
that must be specified with an FTP SITE command.

If TYPE(TAPE) is used, FTP MOUNT parameters must be set appropriately. The
characteristics of this GAT can be changed, particularly the BLK and SPACE
parameters.

Note: You can also create a new GAT statement and make it the default by
pointing to it with DEFGAT.

Default: None.

BLKSIZE (number) Specifies the physical block size (0:65535) associated with the TYPE data set.

 Default: 6080.

COMPACT Specifies IDRC compaction for 3480 tapes.

Configuring FTP 11–21

Generic Attributes Table (GAT)

CONDDISP(CATLG | DELETE)

Specifies the conditional disposition of new data sets when a STOR operation
fails.

Default: CATLG.

DATACLAS (data_class_name)

Specifies the SMS data class.

DCBDSN (data_set_name)

Specifies the name of a data set to use as a model for DCB attributes when
allocating new data sets.

Default: None.

EXPDT (expiration_date) |RETPD (retention_period)

Specifies expiration date and retention period for a new data set.

expiration_date Format: expiration_date = yyyyddd or yyyy/ddd Where yyyy is
a year from 1900 to 2155, ddd is a Julian date from 1 to 366.
You must include any leading zeroes in the ddd value.

retention_period Specifies a number of days between 1 and 9999.

Note: EXPDT and RETPD are mutually exclusive.

ISPFENQ | NOISPFENQ

Specifies that the ISPF enqueue facility be activated (ISPFENQ) or deactivated
(NOISPFENQ).

See FTP Configuration Parameters—FTP Statement for more parameters for
using PDS enqueue.

Default: NOISPFENQ.

11–22 Customization Guide

Generic Attributes Table (GAT)

ISPFRES | NOISPFRES Enables (ISPFRES) or disables (NOISPFRES) the RESERVE logic for the SPFEDIT
ENQ, if the volume on which the PDS resides is shared by Multiple Systems
(UCB shared bit ON).

This assures data integrity while the PDS you are accessing is being
simultaneously accessed by an ISPF user from another system.

See FTP Configuration Parameters—FTP Statement for more parameters to use
PDS enqueue.

Default: NOISPFRES.

LABEL (type) Specifies tape label type.

These label options are supported:

SL Standard labels.
NL No labels.
BLP Bypass label processing.
LTM Leading tape mark.
AL ASCII labels.

Default: SL.

LKEDRES | NOLKEDRES

Enables (LKEDRES) or disables (NOLKEDRES) the RESERVE logic for the
SYSIEWLP ENQ, if the volume on which the PDS resides is shared by Multiple
Systems (UCB shared bit ON). This ensures data integrity while the PDS you are
accessing is simultaneously accessed by the linkage editor from another system.

See FTP Configuration Parameters—FTP Statement for more parameters to use
PDS enqueue.

Default: NOLKEDRES.

LRECL (number) Specifies the logical record length (1:65535) associated with the TYPE data set.

Default: 80.

MANAGEMENTCLAS (management_class_name)

Specifies the SMS management class.

PARALLELMOUNT Specifies that each volume of a data set be mounted on a separate device
(mutually exclusive with UNITCOUNT). PARALLELMOUNT can be
abbreviated to PARALLEL.

Configuring FTP 11–23

Generic Attributes Table (GAT)

PRIVATE Requests private volume.

PDSE Allocates PDSEs instead of PDSs.

RECFM (F | FA | FB | FBA | FBS | FBSA | V | VB | VM | VS | VBA | VBS | VBSA | U)

Specifies the RECFM to associate with the TYPE data set.

Default: FB.

SPACE ({ CYL | TRK | BLK } ([pri] [sec] [dir]))

CYL | TRK | BLK Specifies allocation unit in cylinders, tracks, or blocks.

One of the following must be coded as shown:

pri Specifies the number of allocation units in the first
allocation request for the TYPE data set.

sec Specifies the number of allocation units for secondary
requests for space, used when the primary request is
exceeded.

dir Specifies the number of 256-byte directory blocks to be
reserved for a partitioned data set (PDS) directory. One
block holds from seven (load module) to 16 (source
module) member entries. This parameter indicates a TYPE
data set is a PDS.

Default: None.

STORCLAS (storage_class_name)

Specifies the SMS storage class.

UNIT (unitname) Specifies a generic unit to associate with the TYPE data set.

Default: None.

UNITCOUNT (count) Specifies the number of devices to allocate to the data set (mutually exclusive
with PARALLELMOUNT). UNITCOUNT can be abbreviated to UCNT.

Default: One.

VOLUME (volser) Specifies an explicit volume to associate with the TYPE data set.

Default: None.

11–24 Customization Guide

Generic Attributes Table (GAT)

GAT Statement Usage Notes

GAT Parameters of
Note

You may need to change these parameters on the GAT statement:

TYPE(FILE) The default GAT pointed to by the DEFGAT parameter in the FTP
statement. It enables you to set the DCB and SPACE parameters.

See Generic Attributes Table (GAT) and User/Server SMTP
Segment (SMTP) for more information.

PATH The high-level qualifier for the PATH parameter must not be the
same high-level qualifier that was used for the Unicenter
TCPaccess data sets.

RECFM, LRECL, and
BLKSIZE DCB
Parameters

Standard rules apply for the relationship between RECFM, LRECL, and
BLKSIZE DCB parameters. These are validated in the GAT statement.

Necessary Types GAT statements must be provided for these types: SOURCE, CARDS,
FORTRAN, OBJECT, LOADLIB, TAPE, and PRINT. Other statements/types
can be added as desired.

DEFGAT Parameter If a DEFGAT parameter is specified on the FTP statement, a GAT statement
with the corresponding TYPE must be coded

TYPE(INTRDR) A special GAT entry, TYPE(INTRDR), can be coded to implement an
installation default for allocation parameters for the internal reader. When a
SITE SUBMIT is received, FTP scans the GAT table for a TYPE(INTRDR) entry.
This entry provides the file attributes for the internal reader.

Note: Only RECFM, LRECL, and BLKSIZE are taken. Other parameters are
ignored.

If no TYPE(INTRDR) entry is found, the defaults apply
(RECFM=FB,LRECL=80,BLKSIZE=20000).

TYPE(LIBRARY) A special GAT entry, TYPE(LIBRARY), can be coded to provide allocation
defaults for the server FTP MKD (make directory) command.

SMS Control of
Default Data

In order to have the default data under SMS control, the system administrator
must configure the SMS parameter on the GLOBAL statement and must add
the following to the GAT statement:
GAT DATACLAS(xxx) /* all default */

 STORCLAS(XXX) /* allocations */
 MANAGEMENTCLAS(XXXX) /* SMS parameters */
 PDSE /* all PDSs as PDSEs */

Configuring FTP 11–25

Generic Attributes Table (GAT)

ISPFENQ, ISPFRES, and
LKEDRES Parameters

The GAT parameters ISPFENQ, ISPFRES, and LKEDRES enable the PDS
enqueue feature of Unicenter TCPaccess.

See FTP Examples for information and more parameters to use PDS enqueue.

GAT Examples

This example shows the usage of the GAT statement:
GAT TYPE(SOURCE) RECFM(FB) LRECL(80) BLKSIZE(3120)
GAT TYPE(OBJECT) RECFM(FB) LRECL(80) BLKSIZE(2960)
GAT TYPE(LOADLIB) RECFM(U) LRECL(0) BLKSIZE(6144)
GAT TYPE(CARDS) RECFM(FB) LRECL(80) BLKSIZE(3120)
GAT TYPE(PRINT) RECFM(VBA) LRECL(137) BLKSIZE(19069)
GAT TYPE(ASM) RECFM(FB) LRECL(80) BLKSIZE(3120)
GAT TYPE(CNTL) RECFM(FB) LRECL(80) BLKSIZE(3120)
GAT TYPE(PL1) RECFM(FB) LRECL(80) BLKSIZE(3120)
GAT TYPE(FORTRAN) RECFM(FB) LRECL(80) BLKSIZE(3120)

GAT TYPE(LOAD2) RECFM(U) LRECL(0) BLKSIZE(6144)

GLOBAL SMS /* Turn on SMS system wide */

 DATACLAS(xxxx)

 PDSE

GAT TYPE(FILE) ISPFRES

GAT TYPE(SPECIAL RECFM(VBS) LRECL(1000) BLKSIZE(5004)
 UNIT(ADRIVE) SPACE(BLK(100 200))

 VOLUME(ABC123) SPACE(TRK(31 45))

This example shows how to provide a facility for all data to be under SMS
control:

GAT TYPE(SOURCE)
 RECFM(FB)

 STORCLAS(yyyy)
 MANAGEMENTCLAS(zzzz)

This example shows the setting for PDS enqueue.
GAT TYPE(FILE) ISPFENQ

GAT TYPE(FILE) LKEDRES

11–26 Customization Guide

FTP Support for SMF Activity Reporting and User Accounting

FTP Support for SMF Activity Reporting and User Accounting
Unicenter TCPaccess collects information about user access and protocol data
activity, and records and formats this information for presentation to two
different media:

TCPaccess uses user-provided parameters in IJTCFGxx to determine the degree,
if any, of the SMF data recording desired. The SMF records provide useful
information that can be displayed or analyzed by the SMF report writer
program, T00SMFWR, or by programs provided by other suppliers.

Defining SMF

■ The first presentation is in the hard copy log that displays activity using
messages and codes.

■ The second presentation uses IBM’s System Management Facility (SMF) data
collection feature.

The SMF Accounting Facility provides for the generation of SMF records by the
TCPaccess FTP server component. The facility also allows the validation of
account data that can be entered at any time using the ACCOUNT command or
can be required at user logon through a parameter in APPCFGxx. (Before the
SMF Accounting Facility was added to TCPaccess, password was the only user
identification required when the logon sequence requested use of FTP.) A
required account exit routine is provided with the Unicenter TCPaccess software.
An installation can choose to refuse a logon request in the exit routine, and call or
load tables or other routines to assist in validating the logon request.

SMF record subtypes support the NLST, LIST, RETR, APPE, and STOR data
transfer operations and RNFR/RNTO and DELE commands. User information,
such as user identification and accounting information, is provided.

To support generation of SMF records, use the SMF parameter in IJTCFGxx to set
SMF recording on or off, SMF record type, and Unicenter TCPaccess record
subtypes desired. See Setting SMF Parameters for a description of this statement.

Defining FTP to Require Account Data

To specify that account data is required at user logon (in addition to password),
add this ACCTREQ parameter on the FTP statement:
ACCTREQ | NOACCTREQ

If ACCTREQ is specified ... You are prompted for account data at logon.

If NOACCTREQ is specified ... Account data at logon is not required.

Configuring FTP 11–27

FTP Support for SMF Activity Reporting and User Accounting

Running an SMP/E APPLY CHECK

You should run an SMP/E APPLY CHECK against any USERMOD that you are
trying to install, as there may be additional PREs on your system that are not
accounted for. Once you gather this information, add the SYSMOD list(s) to the
++PRE(xxxxxx) statement. Then SMP/E REJECT the USERMOD to remove the
invalid entry from the SMP/E CSI. You can then RECEIVE/APPLY the
USERMOD with success.

Defining SMF Account Exit

Both source and object code is provided for the Unicenter TCPaccess account
exit, ACEXIT00. The source code is fully documented and annotated and located
in the SAMP data set.

The exit program is loaded by Unicenter TCPaccess at start up and resides in
memory for the life of the Unicenter TCPaccess job. It is called when a user
provides account information and the ACCTREQ parameter is coded on the FTP
statement. The exit can use IBM assembler data management macro calls to load
tables or other routines. The default exit is installed in the LINK data set and
receives a 144-byte accounting field, SMFACACT, to record the accounting
information.

Note: The exit must have the CSECT name ACEXIT00. Use member UMODEX00
in the CNTL data set to install a new or modified exit. Here is an example of
UMODEX00:
//UMODEX00 JOB
//*
//* SAMPLE JCL TO RECEIVE AND APPLY USERMOD TO REPLACE
//* THE SUPPLIED ACCOUNTING EXIT ACEXIT00 WITH USER'S OWN.
//*
//* GLOBALLY CHANGE THE FOLLOWING STRINGS TO REFLECT THE
//* CORRECT SMPE DATASETS AND FMID.
//*
//* 'SMPINDX' <SMP DATASETS HIGH LEVEL QUALIFIER
//* XXX < SMPE FMID IDENTIFING MVS TCP/IP FMID
//*
//* VERIFY THAT THE JOB CARD AND NAMING CONVENTIONS MEET
//* YOUR SITE'S JCL REQUIREMENTS, THEN SUBMIT THIS JOB.
//*
//SMPE EXEC PGM=GIMSMP,REGION=4096K,TIME=960,
// PARM='CSI=SMPINDX.CSI,PROCESS=WAIT'
//SMPHOLD DD DUMMY
//SMPLOG DD DSN=SMPINDX.SMPLOG,DISP=MOD
//SMPOUT DD SYSOUT=HOLDCL
//SMPPTFIN DD *
++ USERMOD (MU0EX00) .
++ VER (Z038)
 FMID(T0XXXX) /* CHANGE TO CORRECT TCP/IP FMID */ .
++ SRC (ACEXIT00) TXLIB(TCPSAMP) DISTMOD(ATCPLOAD) DISTLIB(ATCPSAMP) .
/*

11–28 Customization Guide

FTPSRC and FTPLOGIN Exits

//SMPCNTL DD *
 SET BDY(GLOBAL) .
 RECEIVE S(MU0EX00) .
 SET BDY(TCPTZN) .
 APPLY S(MU0EX00) .
/*

FTPSRC and FTPLOGIN Exits
Unicenter TCPaccess enables you to define global user exits. The FTPRSRCE exit
point is used when an FTP command is received that causes a data set allocation.
The FTPLOGIN exit is defined for when an FTP login is received.

For more information on these exits, see the Planning Guide.

Server FTP JES Support
Unicenter TCPaccess supports batch FTP for JES in Server FTP. Server FTP offers
JES spool support compatible with that offered by the IBM C FTP server. It offers
the same functionality as the IBM server when the filetype is defined as JES.

The Server FTP JES interface allows users to submit, display, retrieve and delete
“user's job” and its spool output. “User's job” is defined as those jobs that are
assigned an OWNERID or jobname equal to the FTP user's user ID plus one
character (depending on the JESFILTER option used in the APPCFGxx).

Minimum Requirements
■ Unicenter TCPaccess 6.0

■ IBM OS/390 V1.R3

■ JES3 customers need IBM OS/390 V2.R5 to use JESFILTER(OWNERID)

■ IBM fixes OW35104 (for JES2) and OW35435 (for JES3) to process
FREE=CLOSE spool files properly

Configuring FTP 11–29

Server FTP JES Support

Using the Server FTP JES Interface

Server FTP JES Interface

The Server FTP JES interface allows users to submit, display, retrieve and delete
“user's job” and its spool output. “User's job” is defined as those jobs that are
assigned an OWNERID or jobname equal to the FTP user's userid plus one
character (depending on the JESFILTER option used in the APPCFGxx).

1. Using a client editor, create JCL and data you wish to submit. Submitting User's Job
From Client

2. Establish a session with the FTP server on the MVS system to which you
want to submit.

3. Enter the FTP JES interface mode by entering:
QUOTE SITE FILEtype=JES

4. Submit the created JCL file by entering:
PUT client.filename

5. The job is submitted to the JES internal reader under the user ID you used
when you logged on to FTP server.

6. To exit FTP JES mode (back to normal FTP mode), enter:
QUOTE SITE FILEtype=SEQ

Note: The FTP JES interface mode stays on until you issue this command or
terminate the FTP session.

You can display status of user's job with the FTP subcommands DIR or LIST
while in FILEtype=JES mode.

Displaying Status of a
Job

Output from DIR subcommand might look like following:
USERA1 JOB03841 OUTPUT 3 spool Files
USERA3 JOB03907 OUTPUT 5 spool Files
USERA2 JOB03855 ACTIVE
USERA4 JOB03923 INPUT

The output is formatted as follows:

■ First column—jobname

■ Second column—job ID assigned by JES

■ Remainder of display shows user's job status:

– INPUT—User's job received but hasn't run yet

– ACTIVE —User's job is running

– OUTPUT—User's job is completed. You also see the number of held
spool files job created which could be retrieved.

11–30 Customization Guide

Server FTP JES Support

Note: If user's job was submitted with a held MSGCLASS, the order of the spool
files is JCL messages, JES messages, and MVS initiator/terminator messages,
followed by the held SYSOUT files.

Output from the LIST subcommand (using same above example) would look like
the following:
JOB03841
JOB03907
JOB03855
JOB03923

Though LIST may not provide desired information, it uses less computer
resources and allows client FTPs that support the MGET subcommand to
function.

To retrieve all held spool created by a user's job, enter FTP JES interface mode
(FILEtype=JES), then specify:

Retrieving User's Job
Spool Files

GET jobid <client.filename>

or
GET jobid.x <client.filename> for compatibility with IBM FTP

All the held spool files are transferred and placed into client filename
<client.filename> (if specified) or jobid (or jobid.x). The following line appears
after each retrieved JES spool file to allow you to find the end of each file:
!! END OF JES SPOOL FILE !!

For example:
GET JOB04197.X

Retrieves all the held spool files for jobid JOB04197 and places them into client
file named JOB04197.X (prefixed by local directory).

To retrieve only certain spool files specify:
GET jobid.# <client.filename>

Replace the # with the file number you desire and <client.filename> (optional) is
replaced by the client filename to receive the data.

For example:
GET JOB04197.1 USERA.TESTJOB

Gets the first held spool file of jobid JOB04197 and places it into
USERA.TESTJOB (prefixed by local directory).

Note: In JES3, the spool files must be in a hold queue reserved for external
writers (HOLD=EXTWTR).

Configuring FTP 11–31

Server FTP JES Support

Deleting a User's Job You can delete a user's job before or during execution, or delete the output after
the user's job completes. To do so, enter the FTP JES interface mode and use the
FTP DELete subcommand.

For example:
DELETE JOB04197

The host returns the message 220 CANCEL SUCCESSFUL after it deletes the job.

Note: When you issue the delete subcommand all spool output related to the
user's job is deleted - both held and non-held spool.

You can submit a user's job using FTP and automatically retrieve its held
output. This function requires the JCL to be built on the FTP server site.

Submitting User's Job
and Automatically
Retrieving Output
(PUTGET)

The following FTP commands are used:
QUOTE SITE FILEtype=JES
GET jclfile remote.filename

The jclfile defines the data set on the server site that contains the JCL for the
user's job. The remote.filename defines the data set on the client site that is to
contain the held spool output when the job completes. The MVS server reads
jclfile and submits it to the JES internal reader. It then waits for the submitted
user's job to complete then retrieves all the held spool files and sends it to the
client.

When using this function, remember that your session is suspended till the user's
job completes or JESPUTGETTO time limit is reached (defined in APPCFGxx). If
a timeout occurs, you will have to manually retrieve your output as described in
Retrieving User's Job Spool Files above.

11–32 Customization Guide

Server FTP JES Support

Examples

The following examples were performed with JESFILTER(OWNERID) set in
active APPCFGxx:
<-- Enter FTP JES interface mode -->
 ftp> quote site file=jes <-- Can abbreviate FILEtype
 200 OK, Ready
<-- Check JES queue for user's jobs -->
 ftp> dir
 200 OK, Ready
 125 Transfer started
 No jobs found on JES queue
 226-Transfer complete. 28 bytes sent in 0.13 seconds (215 bytes/s)
 User=ABC1 Data bytes read: 26.
 226 End of reply.
 28 bytes received in 0.16 seconds (0.17 Kbytes/s)
<-- Submit job from client -->
 ftp> put sample.jcl
 200 OK, Ready
 150-Dataset opened; data connection starting.
 Data transfer Type is ASCII. Structure is File. Mode is Stream.
 Recfm=FB Lrecl=80 Blksize=80
 Data will be written to the JES internal reader.
 150 Network data which exceeds LRECL will be wrapped to the next record.
 226-Transfer complete. 1929 bytes received in 0.27 seconds (7144 bytes/s)
 Submitted job JOB06327 User=ABC1 Data bytes written: 3120.
 226 Records padded: 39
 1929 bytes sent in 0.02 seconds (96.45 Kbytes/sec)
<-- Check status of submit -->
 ftp> dir
 200 OK, Ready
 125 Transfer started
 ABC1J JOB06327 ACTIVE
 226-Transfer complete. 28 bytes sent in 0.11 seconds (254 bytes/s)
 User=ABC1 Data bytes read: 26.
 226 End of reply.
 28 bytes received in 0.24 seconds (0.12 Kbytes/s)
<-- Recheck the status -->
 ftp> dir
 200 OK, Ready
 125 Transfer started
 ABC1J JOB06327 OUTPUT 5 Spool Files
 226-Transfer complete. 45 bytes sent in 0.13 seconds (346 bytes/s)
 User=ABC1 Data bytes read: 43.
 226 End of reply.
 45 bytes received in 0.16 seconds (0.28 Kbytes/s)
<-- Send 1st file to client -->
 ftp> get j6327.1 sample.file1
 200 OK, Ready
 150-Dataset opened; data connection starting.
 Data transfer Type is ASCII. Structure is File. Mode is Stream.
 150 Dataset name: ABC1.ABC1J.JOB06327.D0000002.JESMSGLG
 226-Transfer complete. 1293 bytes sent in 0.19 seconds (6805 bytes/s)
 Dataset name: ABC1.ABC1J.JOB06327.D0000002.JESMSGLG User=ABC1
 Data bytes read: 1964.
 226 End of reply.
 local: sample.file1 remote: j6327.1
 1293 bytes received in 0.025 seconds (50 Kbytes/s)
<-- Send all held sysout to client -->
 ftp> get j6327 sample.allfiles
 200 OK, Ready
 150-Dataset opened; data connection starting.
 Data transfer Type is ASCII. Structure is File. Mode is Stream.
 150 Sending all spool files for JOB06327

Configuring FTP 11–33

Server FTP JES Support

 226-Transfer complete. 724615 bytes sent in 9.13 seconds (79366 bytes/s)
 User=ABC1 Data bytes read: 866617.
 226 End of reply.
 local: sample.allfiles remote: j6327
 724615 bytes received in 9 seconds (79 Kbytes/s)
<-- Submit from server & send results to client (PUTGET) -->
 ftp> get sample.cntl(iehlist) iehlist.allfiles
 200 OK, Ready
 150-Submitting job ABC1.SAMPLE.CNTL(IEHLIST) FIXlrecl 80
 When JOB06349 is done, will retrieve its output
 Dataset opened; data connection starting.
 Data transfer Type is ASCII. Structure is File. Mode is Stream.
 150 Sending all spool files for JOB06349
 226-Transfer complete. 34641 bytes sent in 1.13 seconds (30655 bytes/s)
 User=ABC1 Data bytes read: 37124.
 226 Disk tracks read: 1.
 local: iehlist.allfiles remote: sample.cntl(iehlist)
 34641 bytes received in 1.1 seconds (30 Kbytes/s)
<-- Check the JES queue for user's jobs -->
 ftp> dir
 200 OK, Ready
 125 Transfer started
 ABC1VTOC JOB06349 OUTPUT 4 Spool Files
 ABC1J JOB06327 OUTPUT 5 Spool Files
 226-Transfer complete. 90 bytes sent in 0.12 seconds (750 bytes/s)
 User=ABC1 Data bytes read: 86.
 226 End of reply.
 90 bytes received in 0.17 seconds (0.51 Kbytes/s)
<-- Send all user's jobs held sysout to client -->
 ftp> mget all
 mget JOB06349? y
 200 OK, Ready
 150-Dataset opened; data connection starting.
 Data transfer Type is ASCII. Structure is File. Mode is Stream.
 150 Sending all spool files for JOB06349
 226-Transfer complete. 34641 bytes sent in 1.13 seconds (30655 bytes/s)
 User=ABC1 Data bytes read: 36404.
 226 End of reply.
 local: JOB06349 remote: JOB06349
 34641 bytes received in 0.97 seconds (35 Kbytes/s)
 mget JOB06327? y

 Data transfer Type is ASCII. Structure is File. Mode is Stream.

 local: JOB06327 remote: JOB06327

<-- Delete JOB06327 (ABC1J) -->

 250 Job cancelled OK

 200 OK, Ready

 ABC1VTOC JOB06349 OUTPUT 4 Spool Files

 User=ABC1 Data bytes read: 43.

 45 bytes received in 0.17 seconds (0.26 Kbytes/s)

 ftp> quote site file=seq

 200 OK, Ready
 150-Dataset opened; data connection starting.

 150 Sending all spool files for JOB06327
 226-Transfer complete. 724615 bytes sent in 9.15 seconds (79192 bytes/s)
 User=ABC1 Data bytes read: 866617.
 226 End of reply.

 724615 bytes received in 9 seconds (79 Kbytes/s)

 ftp> del j6327

<-- Check JES queue again -->

 125 Transfer started

 226-Transfer complete. 45 bytes sent in 0.13 seconds (346 bytes/s)

 226 End of reply.

<-- Exit FTP/JES interface mode -->

 200 OK, Ready

11–34 Customization Guide

Chapter

Mail Customization (SMTP) 12

The SMTP statement defines the Simple Mail Transfer capability of Unicenter
TCPaccess. It works in conjunction with a mainframe mail agent and provides
the interface for mail to and from the network.

This chapter provides guidelines to help you customize your SMTP service:

■ Configuring User-Level Services—Describes how to configure the SMTP
from the user-level services

■ Configuring Simple Mail Transfer Protocol (SMTP) Facilities—Describes how
to configure the SMTP facilities

User/Server SMTP Segment (SMTP)■ —Describes how to define your
electronic mail service parameters using SMTP

■ Using SMTP—Describes how to use the SMTP

Configuring User-Level Services
The SERVICE statements define the user-level services provided by Unicenter
TCPaccess and the well-known port numbers.

The most common ones are:

■ TELNET

■ VTAMAPPL

■ FTP

■ LPR

■ USMTP/SSMTP.
SERVICE NAME (service)

 MODULE (STELNET | FTPS | SSMTP | USPOOL | STECHO |
 SCHARGEN | UDPSERV | SPOOL#4 | VTAMAPPL | USMTP)

For a complete description of the SERVICE statement, see the chapter “Protocol
Service Segment (SERVICE).”

Mail Customization (SMTP) 12–1

Configuring Simple Mail Transfer Protocol (SMTP) Facilities

To configure the SMTP services, you must set the following:

SERVICE NAME (SMTP) Provides SMTP mail server.

SERVICE NAME (SPOOL#4) Provides the mail spooler.

SERVICE NAME (USMTP) Provides the SMTP mail sender.

Server SMTP (Port 25) SMTP Example

SERVICE NAME(SMTP)
 MODULE(SSMTP)

This section describes how to configure the Simple Mail Transfer Protocol
(SMTP) facilities within Unicenter TCPaccess. First, you may need to change the
following parameter on the SMTP statement.

Indicates the high level qualifier to use when creating
outbound mail data sets.

UNIT

 PORT(25)
 TCP

Configuring Simple Mail Transfer Protocol (SMTP) Facilities

Note: The high-level qualifier for the PATH parameter must not be the same
high-level qualifier that was used for the Unicenter TCPaccess data sets.

PATH (pathname)

Range: 1-17 characters.

Mail Service Statements

There are three SERVICE statements in the APPCFGxx file for mail services.
These parameters are used by the mail spooler, client SMTP, and server SMTP.
Client SMTP only runs if there is a SERVICE statement for USMTP. Server SMTP
only runs if there is a SERVICE statement for SSMTP.

The mail spooler retrieves mail deposited on the JES spool by a user mail agent
and queues it for client SMTP on the Unicenter TCPaccess mail spool. If a user
mail agent was not installed on the system, it is not necessary to continuously
run the TCPaccess mail spooler. To prevent the mail spooler from being started,
delete the SERVICE statement for SPOOL#4 in the APPCFGxx member.

The SNDMSG program uses these configuration operands:
SPACE

VOLUME
PATH

12–2 Customization Guide

Configuring Simple Mail Transfer Protocol (SMTP) Facilities

These APPCFGxx statements define TCPaccess mail services (SMTP):
SERVICE NAME(SMTP) MODULE(SSMTP) PORT(25)
SERVICE NAME(USMTP) MODULE(USMTP) PORT(25)
SERVICE NAME(SPOOL) MODULE(SPOOL#4) PORT(25)
* SIMPLE MAIL TRANSFER PROTOCOL PARAMETERS
SMTP CYCLE(3 10 1)
 MX
 RETURN(Y LOCAL)
 RTNWTR(UNDWTR)
 WKSMX
 DIVERT(X 9999999)
 INBXFLD(1)
 ROUTE(X LOCAL)
 SXWTR(INBWTR)
 PRINTALL
 LRECL(132)
 OUTLIM(250000)
 TRACE
 CHARSET(CHAR)
 REMOTE(1)
 SPACE(1 5)
 PATH(T01TCP.V2.EMAIL)
 PORT(25)
 UNIT(DISK)
 VOLUME(MVSTO5)
 TRANTBL(ENGLISH)
 FLIST(0)

Customizing Your Mail Environment

Use these steps to tailor SMTP with site-specific information:

1. In this example for minimal site configuration, the SMTP statement defines a
configuration that does not require a mail agent.

Many TCPaccess sites are able to send and receive mail if a site has
minimally configured these SMTP parameters:

 SMTP DIVERT(X 9999999)
 LRECL(132)
 NOMX
 PATH(T01TCP.EMAIL)
 RETURN(Y LOCAL)
 ROUTE(X LOCAL)
 UNIT(SYSALLDA)
 VOLUME(SYSTSO)

Configure the DIVERT, LRECL, MX, PATH, RETURN, ROUTE, VOLUME,
and UNIT parameters on the SMTP statement to match site-specific needs.
All other SMTP parameters either default to correct values or are used by
installations that require additional flexibility in routing mail.

Mail Customization (SMTP) 12–3

Configuring Simple Mail Transfer Protocol (SMTP) Facilities

2. For SMTP mailbox names:

a. Configure the SMTPUSR entries in the SMTPUSR member in the SAMP
data set to site requirements.

b. Replace the names, TSO IDs, and signatures in the SMTPUSR entries
with those of the SMTP users at your installation.

 SMTP 'JQD','DOE','JOHN Q. DOE'

The first entry in this SMTPUSR macro (JQD) is the TSO user ID for the
user. The next entry (DOE) is the name of the mailbox for this user. The
last entry (JOHN Q.DOE) is the signature to use on mail sent by this
user.

The outbound mail handler checks all SMTPUSR entries to see if the user on
the 'x-from' header matches a TSO user ID in the SMTPUSR table. If a match
is found, the mailbox name replaces the TSO user ID on the MAIL FROM:
command for the outgoing message.

The inbound mail handler checks all SMTPUSR entries to see if the user on
the RCPT TO command matches a mailbox name in the SMTPUSR table. If a
match is found, the TSO user ID replaces the mailbox name in the inbound
mail message 'X-to' header.

An entry for the postmaster should be defined at all sites. In this example,
TSO user ID JQD receives messages sent to POSTMASTER.
SMTPUSR 'JQD','POSTMASTER'

The SMTPUSR table should contain a minimum of one TSO user ID that also
serves as a postmaster. If you do not want to send out TSO user IDs and
mailbox names on messages, you can set up the SMTPUSR table with user
JQD as the postmaster:
SMTPUSR 'JQD','JQD','JQD'

SMTPUSR 'JQD','POSTMASTER'

SMTPUSR ,

Execute the usermod UMODSMTP in the CNTL data set to assemble and
link SMTPUSR.

An exit routine follows the mailbox names in SMTPUSR. This routine gets
control when the search of the mailbox name table fails. It sets a return code
to accept or reject the argument name. See the SMTPUSR SAMP member for
more details.

3. SMTP requires that a data set naming convention be established for outgoing
mail. Use the PATH parameter on the SMTP statement to specify the high-
level qualifiers for your installation's outgoing SMTP mail data set names.

Mail data sets are created on the unit and volume specified on the SMTP
statement's UNIT and VOLUME parameter. Mail data sets are deleted once
they are successfully transferred. The @MAILDB@ data set is created when
USMTP is started for the first time. It is not deleted on termination of SMTP.

12–4 Customization Guide

Configuring Simple Mail Transfer Protocol (SMTP) Facilities

In this example, the SMTP statement defines a configuration that does not
require a mail agent. The parameters specify:

■ A default volume of SYSTSO

■ A high-level qualifier of T01TCP.EMAIL

■ A return SYSOUT class of Y for unknown mail

Diverts all incoming deliverable mail to the local printer using SYSOUT class
X.

 SMTP DIVERT(A 0)
 LRECL(132)
 PATH(T01TCP.EMAIL)
 RETURN(Y LOCAL)
 ROUTE(X LOCAL)
 SPACE(1 5)
 UNIT(DISK)
 VOLUME(SYSTSO)

4. For incoming mail destination, SMTP requires SYSOUT classes and
destination IDs for each installation. The class and destination IDs determine
where to queue incoming and undeliverable mail. You can optionally specify
an external writer program ID for incoming and undeliverable outbound
mail JES SYSOUT data sets.

All these parameters are described on the SMTP statement in APPCFGxx in
User/Server SMTP Segment (SMTP).

The ROUTE parameter specifies the JES output class and destination to route
incoming mail.

The RETURN parameter specifies the JES output class and destination ID to
use to return outgoing mail that cannot be delivered.

The DIVERT parameter specifies the JES output class and the maximum
number of characters that should not be exceeded before the incoming mail
is diverted to a local printer. A value of zero causes all incoming mail to be
diverted to the printer, which is appropriate when there is no mail handling
facility to receive incoming mail.

You can use the SXWTR parameter to place an external writer program ID on
inbound mail JES SYSOUT mail data sets.

5. (Optional) An alternative method for sending outgoing mail is through the
JES2 spool. To use the JES2-to-SMTP interface, select a remote job entry
terminal number and make the appropriate definition in your JES2
parameters. A sample of these parameters is in the JES2PARM member of
the SAMP data set. You may need to tailor these parameters for your
installation.

Mail Customization (SMTP) 12–5

Configuring Simple Mail Transfer Protocol (SMTP) Facilities

Note: Some of the JES2 parameters must agree with SMTP parameters in the
APPCFGxx SMTP statement, so if you change a JES2 parameter, be sure to
change the corresponding SMTP parameter.

SPOOL#4 and USMTP share parameters specified on the SMTP statement in
the APPCFGxx file. An installation must update the following SMTP
statement parameters in the APPCFGxx file for SPOOL#4:

 SMTP PATH (mail_path_name)

 UNIT(unit)

 CONS=YES,

/* */

 REMOTE(remote#)

 VOLUME(volser)

The PATH parameter is the 1- to 17-character high-level qualifier for mail
data sets. The UNIT and VOLUME parameters define a valid unit/volser
combination for mail data set allocation at your installation. The REMOTE
parameter can either be the remote name or the destination name for the
remote. Remote RMT20 defined to JES2 with a destination name of R20A
allows any of these on the REMOTE parameter:
REMOTE(R20)
REMOTE(R20A)
REMOTE(RMT20)

If a password is needed for the remote, place it in the PASSWORD
parameter.

Define the SPOOL service in APPCFGxx with a SERVICE statement:
 SERVICE NAME (SPOOL#4) MODULE (SPOOL#4) PORT (25)

SPOOL#4 uses the subsystem interface to retrieve mail from the JES2 spool
and create mail data sets on the DASD volume specified on the VOLUME
statement.

Make the changes below only if your user mail agent sends outgoing mail to
TCPaccess through the JES2 spool (see member JES2PARM in the SAMP
library).
DEST(R20A) DEST=R20
/* */
RMT(20) DEVTYPE=LUTYPE1,

 NUMPU=1,
 BUFSIZE=256

R(20).PR(1) LRECL=255,
 UCS=TN,
 CKPTPAGE=999,
 CLASS=A
/* */
R(20).PU(1) LRECL=255,
 SEP=NO
/* */
R(20).RD(1) CLASS=A
*
OUTCLASS(A) BLNKTRNC=YES, /* Truncate trailing blanks
 OUTDISP=(WRITE,WRITE), /*
 OUTPUT=PRINT, /* Print Class
 TRKCELL=YES /* Track-Cell this Class

12–6 Customization Guide

User/Server SMTP Segment (SMTP)

User/Server SMTP Segment (SMTP)
Use the SMTP statement to define the following electronic mail service
parameters:

User SMTP Operands Syntax
SMTP RTNWTR (name)
 [CYCLE (minute retry limit)]
 [FLIST (number)]
 [HOSTREPL (hostname)

 [INBXFLD (1 | 2)]

 [PASSWORD (password)]

 [SPACE (primary secondary)]

 [MX | NOMX]
 [RETURN (class destination)]
 [UMAPTEMP (number number ...)]
 [WKSMX | NOWKSMX]

Server SMTP Operands Syntax
 [DIVERT (class number)]

 [PRINTALL | NOPRINTALL]
 [ROUTE (class destination)]
 [RTNGAT (gat_name)]
 [SXGAT (gat_name)]
 [SXWTR (name)]

User and Server SMTP Operands Syntax
 [LRECL (number)]
 [OUTLIM (number)]
 [POSTM | NOPOSTM]
 [TRACE | NOTRACE]
 [TRANTBL (tranname)]

Spooler SMTP Operands Syntax
 [JES3CWTR (class writer_name)]

 [REMOTE (destination)]

Mail Customization (SMTP) 12–7

User/Server SMTP Segment (SMTP)

User and Spooler Operands Syntax
 [PATH (name)]
 [PORT (number)]

RTNWTR (name) Specifies the external writer program ID for all undeliverable outbound mail
messages.

 [UNIT (unitname)]
 [VOLUME (name)]

Default: None.

CYCLE (minutes retry limit)

Specifies in sublist notation the client USMTP service cycle (in minutes), retry
delay (in minutes), and retry limit (in hours).

Service cycle must not exceed retry delay, which must not exceed retry limit.

Default: (3 10 96).

DIVERT (class number)

Specifies the JES output class and maximum number of characters that, when
exceeded, cause incoming mail to be diverted to a local printer.

Specifying zero for the number of characters causes no mail to be diverted to the
printer.

Range for number is 0 - 9999999.

Default: (A 0).

FLIST (number) Specifies the number of entries to reserve for a table of IP hosts that had
temporary failures during the outbound mailer (USMTP) send cycle. Once an
outbound mail attempt fails with a non-permanent error to a host during a send
cycle, not all subsequent mail requests during the cycle will be attempted.

The FLIST feature prevents a bad mail host from backing up the outbound mail
queue with a number of temporary errors.

Range: 0 – 9999.

Default: Zero.

12–8 Customization Guide

User/Server SMTP Segment (SMTP)

HOSTREPL (hostname) Specifies the HOST destination to which ALL outbound mail is routed for further
distribution. The value can be up to 255 characters long. Syntax is standard.

An example of using this keyword is to pipeline outgoing email through a
firewall to a mail server on the other side.

Whatever you specify for this value is the only route used for this SMTP session.
If it fails DNR GET, then no outbound mail will be sent until it is corrected via
DNR changes or the HOSTREPL value is corrected and SMTP is restarted.

Note: If the wrong host name is entered on the HOSTREPL() parameter on the
SMTP statement, then the SMTP APP group will have to be recycled to correct
the error.

Default: Deliver outgoing mail normally.

INBXFLD (1 | 2)

SSMTP folds the X-FROM and X-TO headers for inbound mail that are longer
than the record size for the file. This parameter instructs SSMTP which column to
continue on the next line when folding X-headers.

Default: Two.

JES3CWTR (class writer_name))

Allows JES3 users to use SPOOL#4. JES2 users continue to code the REMOTE
parameter, but JES3 users must code JES3CWTR.

class Specifies the JES3 HELD class. This can be only one
character.

writer_name Specifies the JES3 external writer name. This is a maximum
of eight characters and a minimum of one character.

See JES3CWTR Usage for more information on JES3CWTR.

Default: None.

LRECL (number) Specifies the logical record length of the mail file to create.

Default: 80.

Mail Customization (SMTP) 12–9

User/Server SMTP Segment (SMTP)

MX | NOMX If MX is specified, USMTP makes a DIRSRV call for a mail route on outbound
mail. The X-TO headers issue a GET ROUTE BYNAME DIRSRV call. The
DIRSRV GET ROUTE BYNAME call returns MX records to route outbound mail.

If NOMX is specified, USMTP attempts to deliver mail only to the host on the X-
TO header. Generally, this parameter should be set to MX to recognize mail
routing.

Default: NOMX.

OUTLIM (number) Specifies the maximum number of lines a mail data set can contain on the JES
spool. It is used as the OUTLIM parameter to JES.

Default: 250000.

PASSWORD (password)

Specifies the password for the JES remote terminal.

Default: None.

PATH (pathname) Specifies the path name (that is, data set name prefix used for mail spool data set
names (1-44 characters)).

This qualifier should be different from the qualifier used for the other TCPaccess
data sets or SMTP will attempt to send these data sets.

Default: TCPICS.EMAIL.

PORT (number) Specifies the port number for mail to use.

Note: For operation with Unix mail, the port number must be 25.

Default: 25.

POSTM | NOPOSTM Specifies if a copy of any returned mail should be sent to the postmaster.

Default: POSTM.

PRINTALL | NOPRINTALL

Specifies whether to print trace results produced by the TRACE parameter.

Default: NOPRINTALL.

12–10 Customization Guide

User/Server SMTP Segment (SMTP)

REMOTE (destination) Specifies the JES destination ID used by program SPOOL#4. Program SPOOL#4
reads each file from the JES destination as specified on the REMOTE ()
parameter and creates a unique MVS file using the high-level qualifier as
specified on the PATH parameter on the SMTP statement.

Default: None.

RETURN (class destination)

Specifies the JES output class and destination ID used to return outbound mail
that cannot be delivered.

Default: (Y LOCAL).

ROUTE (class destination)

Specifies the JES output class and destination ID used to route inbound mail.

Default: (X LOCAL).

RTNGAT (gat_name) Specifies the GAT for allocation of the SYSOUT DSN for undeliverable mail. The
name must point to an applicable GAT statement.

For more information about the GAT Statement, see the Appendix “Configuring
FTP.”

Default: None.

SEP (separator) Specifies a character to use as a separator. This ensures that the “@” is used in
mail addresses, even if a language translate table translated the character to
another character.

Default: None.

SPACE (primary secondary)

Specifies primary and secondary space allocation for outbound mail in units of
tracks (0-65535). Unused space is released.

Default: (5 15).

SXGAT (gat_name) Specifies the GAT name for allocation of the SYSOUT DSN for inbound mail. The
name must point to an applicable GAT statement. For more information about
the GAT Statement, see the appendix “Configuring FTP.”

Default: None.

Mail Customization (SMTP) 12–11

User/Server SMTP Segment (SMTP)

SXWTR (name) Specifies the external writer program ID files for all inbound mail messages.

Default: None.

TRACE | NOTRACE Specifies whether to produce tracing information for debugging mail problems.

Default: NOTRACE.

TRANTBL (tranname) Specifies the translate table load module to be used.

tranname can be one of the following:

 ENGLISH
FRENCH
GERMAN
SWISS
ITALIAN

For more information about special translate tables, see the chapter “Translation
Tables”

Default: Translate table specified by TRANTBL parameter on GLOBAL
statement in APPCFGxx configuration member.

UNIT (unitname) Specifies a unit name for mail data sets

Default: SYSALLDA.

UMAPTEMP (number, number ...)

Specifies an error code that is returned by a mailer as a permanent error and
instructs the TCPaccess mailer to accept it at a temporary error.

These permanent errors can be returned when attempting to deliver a message to
a group of users. By specifying that this error be treated as a temporary error ,
the destination is automatically retried until the send retry limit is reached.
Return codes recognized as permanent errors instruct the outbound mailer
USMTP to not attempt redelivery.

See SMTP Usage Notes (UMAPTEMP Usage) for more information about this
parameter.

Default: None.

VOLUME (name) Specifies a permanently resident volume name containing the outbound mail
spool (one to six characters).

Default: None.

12–12 Customization Guide

User/Server SMTP Segment (SMTP)

WKSMX | NOWKSMX Specifies whether to issue a DIRSRV request for well-known services before
connecting to a host, to verify that it supports the mail protocol. Since this step is
generally not needed, the default is NOWKSMX.

Default: NOWKSMX.

See the User Guide for information on SNDMSG.

SMTP Usage Notes

For JES2, a typical SYSOUT DD will be similar to the following: JES3CWTR Usage

//OUTPUT DD SYSOUT=A,DEST=(R22A)

For JES3, a typical SYSOUT DD will be similar to the following:
//*OUTPUT DD SYSOUT=(X,SNSWTR)

where SNSWTR specifies the external writer name.

UMAPTEMP gives the site the ability to interpret a permanent error that occurs
during outbound mail delivery as a temporary and to attempt redelivery of the
message for the affected user during the next schedule cycle.

UMAPTEMP Usage

Note: This feature should not be used for errors that are transient in nature.

The UMAPTEMP parameter works in conjunction with the FLIST parameter
when the number specified for FLIST is greater than zero. To use the
UMAPTEMP parameter, code a positive number in the FLIST parameter.

The following table gives the possible return codes for an attempted delivery for
a set of users.

Return Code Description

0 Indicates the mail was delivered.

1 to 9 Temporary errors and will be ignored if placed in the
UMAPTEMP parameter.

10 to 29 Errors that cause the recipients associated with the mail session
to the host to be marked as a permanent error.

10 to 29 Valid for use with the UMAPTEMP parameter.

30 to 44 Syntax errors discovered by USMTP for an individual X-to
user@host entry. Syntax errors cannot be placed in the
UMAPTEMP parameter.

45 and above Serious errors that cannot be mapped to temporary errors with
UMAPTEMP.

Mail Customization (SMTP) 12–13

User/Server SMTP Segment (SMTP)

The following table contains the return code from the attempted delivery, the message text about
the attempted delivery, and a more detailed explanation:

Return
Code

Message Description

0 Mail delivered. The mail message was successfully delivered to all users of the current
X-to host.

1 Host down USMTP could not connect to the attempted host.

2 Died during
transmission

A mail session was severed in the middle of the session.

3 FILE OPEN FAILED USMTP could not open the outbound mail file. The most likely
explanation is that the file is allocated to another user and cannot be
allocated.

4 TCP Connection refused The SYN sent from the outbound TCP session to a remote system's
mailer on port 25 received a reset response. The mail server on the
remote system was not active at the time of the failure.

The remote system mailer rejected the affected users with a 4xx
response.

5 Remote SMTP Shut
Down

The remote system mailer rejected the affected users with a 5xx
response.

6

Unexpected reply from
Remote SMTP

7 Host lookup error While attempting to discern the fully qualified X-to host name,
USMTP received a DNR error response that is deemed transient in
nature.

9

Permanent error
mapped to Temporary
error

A permanent error occurred for an outbound mail session but the
UMAPTEMP facility treats it as if the error is temporary in nature.

10 No such mailbox The remote mail server rejected a specific RCPT TO command for an
X-to user with a 550 error response. No such user.

The remote system will not deliver mail to this unknown user.

11 Not local user The remote mail server rejected a specific RCPT TO command for an
X-to user with a 551 error response because the user was not local to
the system.

The remote system will not deliver mail to this user.

12–14 Customization Guide

User/Server SMTP Segment (SMTP)

Return
Code

Message Description

12 ERRtoobig The remote mail server rejected a mail message with a 552 error
response because the mail message was too large.

13

Syntax error in mailbox
name

The remote mail server rejected a specific RCPT TO command for an
X-to user with a 553 error response. The remote mailer determined
that it was presented with a RCPT TO command with a syntax error.

The remote system will not deliver mail to this unknown user.

15 Unknown Host While attempting to discern the fully qualified X-to host name,
USMTP received a DNR error response that is deemed permanent in
nature.

20

Remote SMTP reports
protocol error

The remote mail server rejected a specific RCPT TO command for an
X-to user with a 500 error response.

The remote system will not deliver mail to this unknown user.

21

Connection did not
receive 220 Response

The remote mail server did not send a 220 message when USMTP
connected to the remote mail server.

22

2Unrecognized response
to HELO command

The remote mail server did not send a 250 message response when
USMTP sent the HELO command.

23

Unrecognized response
to MAIL FROM
command

The remote mail server did not send a 250 message response when
USMTP sent the MAIL FROM command.

24

Unrecognized response
to RCPT TO command

The remote mail server did not send a 250 message response when
USMTP sent the RCPT TO command.

25

Unrecognized response
to DATA command

The remote mail server did not send a 354 message response when
USMTP sent the DATA command.

34 X-to header is null An X-to line was found with bad syntax. The X-to user@host field
must be at least three characters long (u@h). There was neither a user
or host on the X-to line of the mail file.

This X-to line will not be considered for delivery for this mail message.

35

This X-to line will not be considered for delivery for this mail message.

X-to header contains
bad character '<'

An X-to line was found with bad syntax. An X-to line contains a
user@host address starting < character but the terminating > was not
found.

36 X-to header contains
bad character '>'

An X-to line was found with bad syntax. An X-to user@host address
line terminates with a > character but does not start with <.

This X-to line will not be considered for delivery for this mail message.

Mail Customization (SMTP) 12–15

User/Server SMTP Segment (SMTP)

Return
Code

Message Description

37 X-to header contains
bad literal string

An X-to line was found with bad syntax. An X-to user@host address
line contains a bad literal string. A literal string is never terminated
with a '"' character before the end of the line.

This X-to line will not be considered for delivery for this mail message.

38 X-to header contains
bad domain literal

An X-to line was found with bad syntax. An X-to user@host address
line contains a bad domain literal in the host portion. A domain literal
should be of the format [nnn.nnn.nnn.nnn] where nnn represents a
number between 1 and 255.

This X-to line will not be considered for delivery for this mail message.

39 X-to header contains
blanks

An X-to line was found with bad syntax. An X-to user@host address
line contains a blank character. A blank character ' ' is invalid inside a
user@host address.

This X-to line will not be considered for delivery for this mail message.

40 X-to header contains
bad character

An X-to line was found with bad syntax. An X-to user@host address
line contains periods in the wrong location. Examples of the error are
user@.hosta user @[138.42.128.128]

This X-to line will not be considered for delivery for this mail message.

41 X-to header enclosed
incorrectly with < >

An X-to line was found with bad syntax. An X-to user@host address
line does not contain match <' '> characters.

This X-to line will not be considered for delivery for this mail message.

42 X-to header does not
contain a local user

An X-to line was found with bad syntax. An X-to address consists only
of @host. There is no user field.

 This X-to line will not be considered for delivery for this mail
message.

43 X-to header has no valid
syntax for a host

An X-to line was found with bad syntax. An X-header user@host
address could end with a %. An X-header address does not contain an
'@' for the user and host separator character. The x-header is of the
format user@. There is no host.

This X-to line will not be considered for delivery for this mail message.

An X-to line was found with bad syntax. An X-to user@@host address
line contains successive separator characters.

44 X-to header contains
bad syntax of @@

This X-to line will not be considered for delivery for this mail message.

12–16 Customization Guide

User/Server SMTP Segment (SMTP)

Return
Code

Message Description

45

Unknown failure,
probably bad host or
user

When the TCP/IP address space terminated or the USMTP task
terminated without recovery, previous permanent errors associated
with X-to sender addresses were not saved in the mail database. At
restart of USMTP (job or task level) the mail database knows which X-
to addresses have had their mail delivered, which X-to addresses need
to be delivered and which X-to addresses are in error.

Whenever the mail send retry limit is reached or all users have been
marked as in error or having received a mail message, a mail message
is sent back to the originator (if any mail messages ended in error).
This message lists which X-to user's did not receive the mail message
and gives an error message explaining the failure.

The message "Unknown failure, probably bad host or user" indicates that
the TCP/IP address space terminated or the USMTP task terminated
and the permanent code was not saved. However, the T01LOG should
contain an appropriate error message at the time the error occurred.

50

Mail transaction failed
during send attempt

An outbound mail data set used the .f file inclusion feature. System
security will not allow the TCP/IP address space to read the file.

No delivery is attempted to any X-to user.

51 Embedded File
Unknown

An outbound mail data set used the .f file inclusion feature. The file
does not exist.

No delivery is attempted to any X-to user.

52 Embedded File
Recursion

An outbound mail data set used the .f file inclusion feature. The
included file also used .f file inclusion feature.

No delivery is attempted to any X-to user.

53 File Open fail!! An outbound mail data set used the .f file inclusion feature. The
included file failed the open process.

No delivery is attempted to any X-to user.

54

I/O Error reading disk
include file!!

 An outbound mail data set is using the .f file inclusion feature. the
included file cannot be read to EOF due to an I/O error.

No delivery is attempted to any X-to user.

55

I/O Error reading disk
file!!

 An outbound mail data set could not be read to EOF due to an I/O
error.

No delivery is attempted to any X-to user.

60 Truncated Spool File An outbound mail data set could not be read to EOF.

No delivery is attempted to any X-to user.

Mail Customization (SMTP) 12–17

User/Server SMTP Segment (SMTP)

Return
Code

Message Description

61 No user table!! The SMTPUSR load module could not be loaded. This represents a
logic error within USMTP.

No delivery is attempted to any X-to user.

62 Internal format error No
XFROM

The X-from mail header was not found in the mail file. This may
represent a logic error within USMTP.

No delivery is attempted to any X-to user.

63 Internal format error
Bad XFROM

The X-from mail header was not found to contain bad syntax. This
may represent a logic error within USMTP.

No delivery is attempted to any X-to user.

64 Internal format error No
XTO

The X-to mail header was not found in the mail file.

65 Internal format error
Bad XTO

The X-to mail header was not found in the mail file. This represents a
logic error within USMTP.

66

Internal format error
Too many X-tos@

More than 254 mail X-to headers were found in the mail file.

No delivery is attempted to any X-to user.

67

Header Parsing Error The mail header had a problem in the parsing logic. This represents a
logic error within USMTP.

No delivery is attempted to any X-to user.

68 File send retry limit
exceeded

USMTP exceeded the retry limit for this piece of mail. The mail is
returned to the originator with explanations for any users who may
not have received the original message.

69

Unknown failure A bad value was saved in the DSE location field for this X-to host.

The problem indicates either a USMTP logic error or a storage overlay
issue.

12–18 Customization Guide

Using SMTP

Using SMTP
In order to use the SMTP facility, uncomment the three SERVICE statements
mentioned earlier
SMTP CYCLE(3 10 1)

 DIVERT(X 9999999)
 LRECL(132)
 NOMX
 PATH(T01TCP.V2.EMAIL)
 ROUTE(X LOCAL)
 RETURN(Y LOCAL)
 UNIT(SYSALLDA)
 TRANTBL(ENGLISH)

Usage Notes for SMTP

Parameter Usage These parameters are used by the mail spooler, client SMTP, and server SMTP.

Mail Spooler The mail spooler retrieves mail deposited on the JES spool by a user mail agent
and queues it for client SMTP on the TCPaccess mail spool. If a user mail agent
has not been installed on the system, it is not necessary to continuously run the
TCPaccess mail spooler.

To prevent the mail spooler from being started, delete the SERVICE statement
for SPOOL#4 in the APPCFGxx member.

USMTP Client SMTP only runs if there is a SERVICE statement for USMTP.

SSMTP Server SMTP only runs if there is a SERVICE statement for SSMTP.

SNDMSG

VOLUME

The SNDMSG program uses these configuration operands:
SPACE
UNIT

PATH

Mail Customization (SMTP) 12–19

Using SMTP

Multiple Mail
Messages from a
Single JES Data Set

SMTP users can send multiple mail messages from a single JES data set. In
order to signal the end of one mail message and the beginning of another mail
message, the data set must have a line beginning with a period “ . “ followed
immediately by a line beginning with “X-From”. White space (blanks) to the left
of the “ . “ or “X-From” are ignored, as are blank lines between the “ . “ and the
“X-From line.

Example This is the first message:
X-From: jjd@jjd.hq.company.com
X-to: jjd@company.com
Date: Fri, 26 Feb 99 11:08:49 EST
From: jjd@jjd.hq.company.com
To: jjd@company.com
Subject: test of mail

This is still the first message:
X-From: jjd@jjd.hq.company.com
X-to: jjd@company.com
Date: Fri, 26 Feb 99 11:08:49 EST
From: jjd@jjd.hq.company.com
To: jjd@company.com
Subject: test of 2nd mail message

This is the second message:
.

X-From: jjd@jjd.hq.company.com
X-to: jjd@company.com
Date: Fri, 26 Feb 99 11:08:49 EST
From: jjd@jjd.hq.company.com
To: jjd@company.com
Subject: test of 2nd mail message

This is the third message:
.

X-From: jjd@jjd.hq.company.com
X-to: jjd@company.com
Date: Fri, 26 Feb 99 11:08:49 EST
From: jjd@jjd.hq.company.com
To: jjd@company.com
Subject: test of 3rd mail message

This is the fourth message:
.

X-From: jjd@jjd.hq.company.com
X-to: jjd@company.com
Date: Fri, 26 Feb 99 11:08:49 EST
From: jjd@jjd.hq.company.com
To: jjd@company.com
Subject: test of 4th mail message

12–20 Customization Guide

Using SMTP

This is still the fourth message:
X-From: jjd@jjd.hq.company.com
X-to: jjd@company.com
Date: Fri, 26 Feb 99 11:08:49 EST
From: jjd@jjd.hq.company.com
To: jjd@company.com
Subject: test of 4th mail message

This is the fifth message:
.
X-From: jjd@jjd.hq.company.com
X-to: jjd@company.com
Date: Fri, 26 Feb 99 11:08:49 EST
From: jjd@jjd.hq.company.com
To: jjd@company.com
Subject: test of 5th mail message

SMTP Examples

This example shows SMTP statement usage:
SMTP CYCLE(3 30 48)

 DIVERT(A 0)
 MX
 PATH(TCPICS.MAIL)
 REMOTE(5)
 RETURN(Y LOCAL)
 ROUTE(X LOCAL)
 SPACE(1 5)
 VOLUME(MVSTSO)
 OUTLIM(35000)
 LRECL(125)
 UNIT(3380)

Note: If you plan to use the mail facility (SMTP), you can uncomment the
SERVICE statements for USMTP, SSMTP and SPOOL#4.
SERVICE NAME(TELNET) MODULE(STELNET) PORT(23) IDLE(480)
SERVICE NAME(VTAMAPPL) MODULE(VTAMAPPL) PORT(23) NOCPASSWORD
SERVICE NAME(TELNET) MODULE(STELNET) PORT(1023) AUTO(TSO) IDLE(480)
SERVICE NAME(FTP) MODULE(FTPS) PORT(21) IDLE(300)
SERVICE NAME(LPR) MODULE(USPOOL) PORT(515)
SERVICE NAME(LPR) MODULE(USPOOL) PORT(516)
SERVICE NAME(UDPE) MODULE(UDPSERV) PORT(7) UDP
SERVICE NAME(UDPC) MODULE(UDPSERV) PORT(9) UDP
* SERVICE NAME(USMTP) MODULE(USMTP) PORT(25)
* SERVICE NAME(SSMTP) MODULE(SSMTP) PORT(25)
* SERVICE NAME(SPOOL#4) MODULE(SPOOL#4) PORT(25)

Mail Customization (SMTP) 12–21

Chapter

13
Configuring Remote Printing
Services

The Unicenter TCPaccess network line printer service looks to the network like a
UNIX line printer daemon and is compatible with the UNIX lpr command.

This chapter discusses the following topics:

■ Printing Services—Describes how to uncomment and change SERVICE
statements

■ Network Line Printer Segment (LPR)—Describes how to define the
configuration parameters for the network line printer services

Printing Services
The SERVICE statements in the APPCFGxx member of the PARM data set define
the user-level services provided by Unicenter TCPaccess and the well-known
port numbers. The most common ones are:

■ TELNET

■ VTAMAPPL

■ FTP

■ LPR

■ USMTP/SSMTP

SERVICE Statement Syntax for LPR

This is the syntax for the LPR SERVICE statement.
SERVICE NAME (LPR)

 MODULE (STELNET | FTPS | SSMTP | USPOOL | STECHO |
 SCHARGEN | UDPSERV | SPOOL#4 | VTAMAPPL | USMTP)

Note: Remove or comment out the SERVICE statement for LPR if EPS is used to
process print requests.

Configuring Remote Printing Services 13–1

Printing Services

Usage Notes

For printing, you may need to set:

SERVICE NAME (LPR) To specify the name of the service as LPR.

MODULE (USPOOL) To provide the LPR spooler server.

PORT (number) To specify the well-known port number for LPR
(515).

Examples

The following example shows the use of the SERVICE statement for LPR.

Line Printer Service (Port 515)
SERVICE NAME(LPR)
 MODULE(USPOOL)
 PORT(515)
 TCP

The LPR statement defines the line printer services for Unicenter Unicenter
TCPaccess. If you are installing the Enterprise Print Service product, you must
comment out or delete the LPR statement for Port 515 as it is used by EPS.
LPR PORT(515) TRANTBL(ENGLISH)
LPR PORT(516)

Note: On BSD Unix systems, the file /etc/printcap needs an entry added that
reflects your MVS hostname. SVR4 systems require different printer
configurations. Consult your SVR4 documentation for specifics.

13–2 Customization Guide

Network Line Printer Segment (LPR)

Network Line Printer Segment (LPR)
Defines the configuration parameters for the Unicenter TCPaccess network line
printer services.

LPR Statement Syntax
LPR [ALL | NET | SUBNET]
 [CLASS (class)]
 [DESTID (name)
 [IBUF (number)]
 [OUTLIM (number)]
 [PORT (port)]
 [SELECT | NOSELECT | FLUSH]
 [TRANTBL (name)]

ALL | NET | SUBNET Specifies which hosts can access this service:

ALL Any remote host can access the line printer service.

NET Only hosts on the local network can access this service.

SUBNET Only hosts on the local subnetwork can access this service.

Default: ALL.

CLASS (class) Specifies JES SYSOUT class to which the print file is written. Only one class is
allowed.

Default: A.

DESTID (name) Specifies selection of a default local output device destination ID.

Default: LOCA.

IBUF (number) Specifies the total amount of input buffer space for receiving from TCP (1:4095).

Default: 3000.

OUTLIM (number) Specifies the JES OUTLIM parameter to use in creating the output file to JES.

This limits a print file to that number of print lines.

Default: 250000.

PORT (port) Specifies the port number for this LPR server.

This must be 515 to operate with the UNIX lpr command.

Default: 515.

Configuring Remote Printing Services 13–3

Network Line Printer Segment (LPR)

SELECT | NOSELECT | FLUSH

Specifies whether requested printer queue name of the lpr can be used to
override that default. Allows use of printer queue name to point to remote
printers. Otherwise, printing is limited to local printer.

NOSELECT Use defined default local output destination ID. The
requested printer queue name of the lpr is ignored.

SELECT Allow selection of requested destination ID of the lpr. If
printer queue name is omitted or invalid as a destination
ID, use the default output destination ID.

FLUSH Allow selection of requested destination ID of the lpr. If
printer queue name is omitted or invalid as a destination
ID, purge the output.

Default: NOSELECT.

TRANTBL (name) Specifies the name of a translation table used to translate incoming ASCII text
into EBCDIC.

 For more information about special translate tables, refer to the “Translation
Tables” chapter.

Default: ENGLISH.

Usage Notes

LPR Parameters of
Note

You may need to change the following parameters.

CLASS Specifies what SYSOUT class to use for the printer output.

The default is A.

SELECT Allows use of printer queue name to point to remote printers.
Otherwise, printing is limited to the local printer.

USPOOL Activation A SERVICE statement to activate USPOOL must be used for the LPR server.

EPS Usage If EPS is installed, the print requests are serviced by EPS rather than the LPR
server.

13–4 Customization Guide

Network Line Printer Segment (LPR)

LPR Statement Example

This example shows the usage of the LPR statement:
LPR IBUF(3000)
 CLASS(A)
 TRANTBL(ENGLISH)
 ALL
 DESTID(LOCAL)
 OUTLIM(300000)

Configuring Remote Printing Services 13–5

Chapter

14
Remote Procedure Call (RPC)
Configuration

This chapter provides background and guidelines to help you configure the
MAPCFGxx member of the PARM data set. MAPCFGxx sets up the Portmapper
for Remote Procedure Calls (RPC).

This chapter discusses the following topics:

■ The Portmapper—Describes the operation of the portmapper

■ MAPCFGxx Configuration—Describes the MAPCFGxx configuration
member

The Portmapper
RPC-based client programs need a way to find RPC-based server programs, or to
look up and find the port numbers of server programs. The naming of services
by way of the port number segment of their IP address is mandated by the
Internet protocols. Given this, clients face the problem of determining which
ports are associated with the services they want to use.

The MAP task group is responsible for mapping Remote Procedure Call (RPC)
programs and version numbers to transport specific port numbers. This service is
required by NFS and application programs using the RPC interface of the
Unicenter TCPaccess API.

The Portmapper protocol defines an RPC network service that provides a
standard way for RPC-based clients to look up the port number of any remote
RPC-based program supported by a server. Because the port mapper can be
implemented on any transport providing equivalent ports, it provides a single
solution to a general problem that works for all clients, servers, and networks.

Remote Procedure Call (RPC) Configuration 14–1

The Portmapper

Port Registration

Every port mapper on every host is associated with port number 111. The port
mapper is the only RPC network service that must have such a well-known
(dedicated) port. Other network services can be assigned port numbers statically
or dynamically as long as they register their ports with the host port mapper.

For example, an RPC-based server program typically gets a port number at
runtime by calling an RPC library procedure. Note that a given network service
can be associated with port number 256 on one server and with port number 885
on another. On a given host, a service can be associated with a different port
every time its server program is started.

Delegating port-to-remote program mapping to port mappers automates port
number administration. Statically mapping ports and remote programs in a file
duplicated on each client requires updating all mapping files whenever a new
remote program is introduced to a network. (The alternative of placing the
port-to-program mappings in a shared NFS file would be too centralized, and if
the file server went down, the whole network would go down with it.)

The collection of port-to-program mappings maintained by the port mapper
server is called a port map. To make the port mapper start automatically
whenever Unicenter TCPaccess is started, place the START MAP command in
the START00 member of the PARM data set.

As shown in the typical port mapping sequence here, both RPC server programs
and client programs call port mapper procedures.

Note: Although RPC client and server programs and client and server machines
are usually distinct, they need not be. A server program can also be a client
program, as when an NFS server calls a port mapper server. Likewise, when a
client program directs a remote procedure call to its own machine, the machine
acts as both client and server.

As part of its initialization, an RPC server program calls the host port mapper to
create a port map entry. Whereas server programs call port mappers to update
port map entries, clients call port mappers to query port map entries.

To find the port of a remote program, a client sends an RPC call message to the
server port mapper. If the remote program is supported on the server, the port
mapper returns the associated port number in an RPC reply message. The client
program can then send RPC call messages to the port of the remote program. A
client program can minimize its port mapper calls by caching the port numbers
of recently called remote programs.

14–2 Customization Guide

The Portmapper

The port mapper provides an inherently stateful service because a port map is a
set of associations between registrants and ports.

The following diagram shows typical port mapping sequence, where:

1. Server registers port with the port mapper.

2. Client gets server's port from port mapper.

3. Client calls server's port directly.

Port mapperClient program

Server program

¹
³

²

Client machine Server machine

The port mapper protocol provides the procedure, callit(), by which the port
mapper can assist a client in making a remote procedure call. A client program
passes the program number, version number, procedure number and arguments
of the target procedure in a call message. callit() looks up the port number of the
target procedure in the port map and sends a call message to the target
procedure that contains the arguments received from the client.

When the target procedure returns results to callit(), callit() returns the results to
the client program. It also returns the port number of the target procedure so the
client can subsequently call the target procedure directly.

Because every instance of a remote program can be mapped to a different port on
every server, a client has no way to broadcast a remote procedure call directly.
However, you can use the port mapper callit() procedure to broadcast a remote
procedure call indirectly, since all port mappers are associated with port number
111.

One way for a client to find a server running a remote program is to broadcast a
call to callit(), asking it to call procedure 0 of the desired remote program. If this
call is broadcast to all servers, the first reply received is likely to be from the
server with the lightest workload.

Remote Procedure Call (RPC) Configuration 14–3

MAPCFGxx Configuration

MAPCFGxx Configuration
The MAPCFGxx member in the PARM data set specifies the configuration
parameters for the MAP task group.

To specify a MAPCFGxx member other than the default MAPCFG00, specify
CNFG=xx in the START MAP command found in the START00 member of the
PARM data set.

PORTMAP Statement Syntax
PORTMAP [APISUBSYS (subsystem_name)] [DEBUG | NODEBUG]

APISUBSYS (subsystem_name)

Specifies the MVS subsystem name of the API access method subsystem. The
special name of **** indicates that the API subsystem resides in the same address
space with the MAP task group.

Default: ****

DEBUG | NODEBUG Specifies whether the port mapper writes debug trace records to the MAPLOG
and MAPERR DD data sets for each port map request it receives or reply it
sends.

Default: NODEBUG

Example

This example shows PORTMAP statement usage:

* SPECIFY PORT MAPPER START UP PARAMETERS

PORTMAP APISUBSYS(****)
 NODEBUG

14–4 Customization Guide

Chapter

15 SNMP Agent Configuration

This chapter describes how to configure the Simple Network Management
Protocol (SNMP) agent.

The following topics are discussed in this chapter:

■ SNMP Agent Configuration—Describes the SNMP Agent configuration
member statements including SNMP, POOLDEF, COMMUNITY, VIEW,
TRAP, LOGGING, and VARIABLE

■ SNMCFGxx Customization—Describes how to configure the SNMCFGxx
member of the PARM data set

■ SNMP DPI—Describes the Distributed Program Interface for SNMP

■ SNMP DPI Functions—Lists the SNMP DPI functions supported by
Unicenter TCPaccess

SNMP Agent Configuration
SNMP (Simple Network Management Protocol) provides a simple network
management agent task. The SNMP protocol exchanges information about the
status of a device. Abstract Syntax Notation (ASN) defines the format of Protocol
Data Units (PDUs) within the management framework to obtain information
from a device. The device may be a router, a bridge, or a host.

Unicenter TCPaccess is implemented as a host that supports data in the
Management Information Base (MIB) II, as described in RFC 1213. Responses are
sent when an SNMP management station requests information about certain MIB
quantities.

The sample library member TCPMIB contains a MIB description for the
Unicenter TCPaccess enterprise object identifier. SNMP applications that query
the Unicenter TCPaccess SNMP Agent to reference the enterprise object identifier
using symbols rather than decimal integers can use this MIB description. The
Unicenter TCPaccess SNMP Agent does not presently support any enterprise
specific variables. Consequently, this MIB description is for the enterprise object
identifier only.

SNMP Agent Configuration 15–1

SNMP Agent Configuration

The SNM task group replies to SNMP requests from management stations and
generates traps. It uses UDP over the API interface. Standard SNMP sends
responses to management requests over UDP port 161 and trap information over
UDP port 162.

Note: SET requests are not supported.

Object Identifiers

MIB data groups are known as Object Identifiers (OIDs). These are defined
below:

Object Identifier Description

System The managed node itself.

Interfaces The network attachments.

Address
Translation

The IP Address Translation table group is obsolete, but still
supported.

IP The Internet Protocol layer group contains these subgroups:

IP Scalars: Overall status and counters for the IP layer.

IP Address Table: The IP addresses supported by the
network interfaces.

IP Routing Table: The routing information table used to
reach remote addresses.

IP Net to Media Table: The hardware address table used for
destination IP addresses Address Resolution Protocol
(ARP).

ICMP Counters for each ICMP message sent and received.

TCP The Transmission Control Protocol group contains these
subgroups:

TCP Scalars: Overall status and counters for the TCP layer.

TCP Connection Table: A description of each connection in
TCP.

15–2 Customization Guide

SNMP Agent Configuration

UDP The User Datagram Protocol group contains these
subgroups:

UDP Scalars: Overall status and counters for the UDP layer.

UDP Connection Table: A description of each UDP
connection.

SNMP The Simple Network Management Protocol group contains
information and counters about the SNMP Layer.

Supported Traps

The Unicenter TCPaccess SNMP Agent supports the following traps:

Trap Description

COLD-START Occurs when the ACP Task Group (TCP/IP Stack) is
brought up.

WARM-START Occurs when the SNM Task Group is brought up.

LINK-DOWN Occurs when a network interface driver is de-activated
within the ACP Task Group.

LINK-UP Occurs when a network interface driver is activated
within the ACP Task Group.

AUTHENTICATION
FAILURE

Occurs when a management station attempts to obtain
information using a community not defined in the
SNMCFGxx PARM member.

SNMP Agent Configuration 15–3

SNMCFGxx Customization

SNMP Activation
Activation of the SNMP Agent involves updating the SNMCFGxx member
located in the PARM data set. Specific parameters that can be configured in this
member include system MIB variables (sysLocation, sysContact, and sysName),
SNMP community values, access mode values, view values, and trap values.

Community Defines a relationship between an SNMP Agent and one or
more management stations.

Access Mode Relates to how a management station can access a
particular OID. Valid values are READONLY and NONE.

View Defines a subset of object identifiers visible to a particular
community.

Trap Defines which management station receives TRAP
information.

You can use a combination of these statements to limit access to particular MIB
variables and define which management stations will receive specific TRAPs.

The MIB II document describes data for Exterior Gateway Protocol (EGP); since
Unicenter TCPaccess does not support EGP, these MIB II variables are not
reported on. The MIB II document also describes place holders for other
variables related to network interfaces (for example, ifSpecific) and application
layer variables. These are not currently supported, but may be supported in
future releases.

SNMCFGxx Customization
The SNMCFGxx member in the PARM data set specifies the configuration
parameters for the SNM Task Group.

Specify the following in the START00 member of the PARM data set to invoke
the SNMP agent in the Unicenter TCPaccess task:
START SNM

To specify an SNMCFGxx member other than the default of SNMCFG00, add
CNFG=xx after the START SNM command, where xx is the two character suffix.
The START command is described in detail in the System Management Guide.

15–4 Customization Guide

SNMCFGxx Customization

SNMP Statement Syntax
SNMP [PORT (nn)]

POOLDEF NAME (poolname)

 INITIAL (init_pool_size)

 MINIMUM (min_pool_size)
 EXPAND (amount)
 CONTRACT (amount)
COMMUNITY community_name [[ipaddress] [accessmode] [viewname]]
VIEW viewname [subtreename [subtreename]]
TRAP community_name ipaddress
LOGGING level
THRESHOLD type fnum
VARIABLE variable_name value
DPI [ON|OFF] [MIBPROT|NOMIBPROT] [timeout]

SNMP PORT (nn) Specifies the UDP port number for SNMP to use. Traps are sent on UDP port
nn+1. Internet standard SNMP uses UDP port 161 and 162.

Default: 161.
POOLDEF

NAME (poolname)

INITIAL
 (init_pool_size)

MINIMUM
 (min_pool_size)

EXPAND (amount)

CONTRACT
 (amount)

The following parameters are used on the POOLDEF statement.

 NAME (poolname) Specifies the name of the pool to be defined. One
POOLDEF command must be entered for each of these
pools:

 XAE Used for SNMP requests, responses and traps.

 SNM Used to contain data from responses.

 Default: None – required parameter.

INITIAL (init_pool_size) Specifies the initial number of pool elements to get for
the pool.

 Default: None—required parameter.

 MINIMUM (min_pool_size) Specifies the minimum number of pool elements to
leave in the pool if pool contraction is performed.

 Default: None—required parameter.

EXPAND (amount) Specifies the number of pool elements to get when and if the
pool must be expanded.

 Default: None - required parameter.

CONTRACT (amount) Specifies the number of pool elements to free when and if
the pool must be contracted.

 Default: None—required parameter.

Refer to the chapter “Defining Control Block Pools (POOLDEF Statement)” for
more information on pools that can be defined for SNMCFGxx.

 COMMUNITY
community_name
ipaddress accessmode

The following parameters are used on the COMMUNITY statement.

community_name Specifies the name of the SNMP community being defined.

SNMP Agent Configuration 15–5

SNMCFGxx Customization

ipaddress accessmode
viewname

This is any character string with no spaces in it.

 Default: None—required parameter.

ipaddress Specifies the IP address of the management station that uses this
community. If absent, or if 0.0.0.0 is specified, then any manager can use
this community.

 Default: 0.0.0.0

accessmode Specifies the access mode of this community. This is specified as one
of readonly, writeonly, readwrite, or none.

 Currently, writeonly and readwrite are not supported.

 Default: Readonly.

 viewname Specifies the view name associated with this community. This object
is coded as a string. This name must have a matching view command associated
with it.

Default: Default view providing readonly access to all MIB groups.

VIEW viewname
subtreename
subtreename

The following parameters are used on the VIEW statement.

viewname Specifies the view name being defined. It is coded as a string and
should match a view name variable specified on a community statement.

subtreename Specifies the subtrees that compose this view. If no subtrees are
specified, then the view contains all objects known to the agent. Subtree
names are coded as name fields in the MIB II RFC 1213. Available subtrees
are tcp, udp, system, icmp, snmp, at, ip and interfaces.

 See SNMP Usage Notes for related RFC numbers.

TRAP
community_name
ipaddress

The following parameters are used on the TRAP statement.

community_name Specifies the name of the community where traps are sent.

Default: None—required parameter.

ipaddress Specifies the IP address of the management station where traps are
sent.

Default: None—required parameter.

LOGGING level The following parameter is used on the LOGGING statement.

level Specifies the level of logging messages to produce. All logging messages
are written to the log specified by the SNMLOG DD in the Unicenter
TCPaccess startup JCL.

 PRODUCTION—LOGGING PRODUCTION produces messages relating
to operation of the SNMP agent.

 DEBUG—LOGGING DEBUG is used for diagnosing problems and is
generally used under the direction of Customer Support.

Default: PRODUCTION.

15–6 Customization Guide

SNMCFGxx Customization

THRESHOLD type
fnum

The following parameters are used on the THRESHOLD statement.

type Specifies threshold type as either SCALAR or TABLE. With fnum, specifies
the time that a retrieval of a data item is considered valid. After that time,
another retrieval is made. This is used to lower the overhead of SNMP.
These numbers default to five seconds for SCALARS and 30 seconds for
TABLE entries. You may want to specify a time period less than your
SNMP management station's polling interval, in order to produce
consistent results.

 Alternatively, set your SNMP management station's polling interval
higher than the defaults mentioned above. For the distinction between
SCALARS and TABLE entries, refer to the SNMP MIB-II descriptions in
the RFCs, or a book on SNMP. See SNMP Usage Notes for RFC numbers.
THRESHOLD TABLE 9.5 THRESHOLD SCALAR 4.8

fnum Specifies time period as a floating-point number. A floating-point number
is a number with or without a decimal point, optionally followed by an E
and another number that represents an exponent.

VARIABLE
variable_name value

The following parameters are used on the VARIABLE statement.

variable_name Specifies the MIB II name of the variable being defined. These
variables are valid: sysContact, sysLocation, and sysName.

 Default: None—required parameter.

value Specifies the value(s) to be assigned to this variable. If multiple values are
specified, they must be enclosed in double quotes.

 Default: None—required parameter.

DPI [ON | OFF]
[MIBPROT |
NOMIBPROT]
[timeout]

ON Enables DPI functionality in the Unicenter TCPaccess SNMP agent.

OFF Disables DPI functionality in the Unicenter TCPaccess SNMP agent.

MIBPROT Prevents the Unicenter TCPaccess MIBs from being overwritten by a
DPI sub-agent.

NOMIBPROT Allows the Unicenter TCPaccess MIBs to be overwritten by a
DPI sub-agent.

timeout Modifies the time to wait for a response from a DPI sub-agent.

Range is 1 to 600 seconds.

For more information about SNMP DPI, see SNMP DPI.

Default: OFF MIBPROT 5.

SNMP Agent Configuration 15–7

SNMCFGxx Customization

SNMP Usage Notes

SNMP and DNR For proper operation of the SNMP agent, an entry must be placed in the
DNRALCxx member that resolves the Unicenter TCPaccess subsystem to the IP
address of the MVS host being managed. The subsystem identifier is obtained
from the Unicenter TCPaccess startup JCL symbolic 'SSN'.

Note: If this alias entry is not defined, the SNMP Agent does not operate
properly.

Multihome
Considerations

If Unicenter TCPaccess is operating in a multihome configuration, and one of
the network interfaces fails, a trap of Link-Down is sent over the interface
resolved by the subsystem alias. The value of ifOperStatus still reflects a status
of up due to a limitation of the Unicenter TCPaccess device drivers. Requests
and traps continue to be sent over the active network interfaces.

Note: The value of 'ipAdEntReasmMaxSize' reflects the maximum size of the
send buffer of the UDP protocol.

Initialization Messages If the IP/UDP stack is not completely initialized, the SNMP Agent may not be
able to respond to error messages stating that either the port 161 is unreachable
or that 161 is a bad well known port. These messages should disappear once the
Agent and the IP/UDP stack synchronize.

COMMUNITY
Statement
community_name
Parameter

The community name of the inbound packet is tested for an exact match to the
configuration definition. If it fails, it is changed to upper case and tested again.
This means that if the community name is configured in upper case, then it is
not case-sensitive. However, if it is configured in mixed (or lower) case, then it
is case-sensitive.

SNMP RFCs The relevant RFCs for SNMP are listed below.

■ rfc1158 “Management Information Base for Network Management of
TCP/IP-based internets: MIB-II”

■ rfc1156 “Management Information Base for Network Management of
TCP/IP-based internets”

■ rfc1155 “Structure and Identification of Management Information for
TCP/IP-based Internets”

15–8 Customization Guide

SNMP DPI

Example

This example shows the usage of these statements:
SNMP PORT(161)
POOLDEF NAME(XAE)
 INITIAL(20)
 MINIMUM(40)
 EXPAND(20)
POOLDEF NAME(SNM)
 INITIAL(50)
 MINIMUM(100)
 EXPAND(25)
COMMUNITY PUBLIC
TRAP PUBLIC 1.0.0.1
VARIABLE SYSNAME “JANE DOE-JAD@YOUR.COM"
VARIABLE SYSLOCATION "123 MAIN ST., ANYTOWN, USA"
LOGGING DEBUG

SNMP DPI
The Simple Network Management Protocol Distributed Program Interface
(SNMP DPI) is a protocol that allows an application to leverage the SNMP
coding/decoding capabilities of the TCP/IP stack. You only need to define the
Management Information Base (MIB) elements that provide the status or control
information to be viewed or controlled from a Network Manager program (such
as HP Openview).

The basic process of an SNMP DPI application is:

1. Issue an SNMP Get request for the port that the SNMP agent is using to
Listen for SNMP DPI session requests.

2. When the SNMP Get response is received, open a TCP socket to that port.

3. Send SNMP DPI Register packets to register the application's MIBs with the
SNMP agent.

4. Wait for the SNMP agent to send SNMP DPI Get or Set requests. When a Get
request is received, send an SNMP DPI Response with the value of the
requested MIB. When a Set request is received, modify the value of the
requested MIB (which may require action by the application), and send an
SNMP DPI Response with the updated value of the requested MIB.

5. As appropriate, send SNMP DPI Trap packets.

In Version 1.1 of the protocol, there is no deregistration sequence defined. If the
SNMP agent detects a socket error or times out before the SNMP DPI Response is
received, the connection is aborted. Therefore, the application should test the
connection periodically to verify that the connection is valid.

SNMP Agent Configuration 15–9

SNMP DPI

Benefits of Using SNMP DPI

SNMP Network Manager programs are used to maintain availability of
networks. Typically, they provide status of and some control over the bridges
and routers used to move data through the network, and some status of hosts on
the network. However, if there is a single connection affecting other connections
(such as a departmental server application issuing an SQL query to a mainframe
database that generates 100 MB of data transfer), there is no way for the network
administrators to identify the cause of the performance degradation, unless the
application provides the information.

With SNMP DPI, an application can provide that information, and network
administrators can have end-to-end status of network transactions.

SNMP Network Manager programs display the raw data. If you prefer a tabular
or graphical format, you need to write a formatting routine for the SNMP
Network Manager.

SNMP DPI Configuration

You need to configure SNMCFGxx for SNMP DPI. Read the description for the
DPI parameter in SNMCFGxx Customization for more information.

Linking a DPI Application for Unicenter TCPaccess

This section provides JCL for linking and running your DPI application.

JCL to Relink to HPNS
and DPI Libraries

To run a DPI application over Unicenter TCPaccess, it must be relinked to use
the Unicenter TCPaccess HPNS and DPI function libraries.

You can use the following JCL to relink:
//<jobcard>
//*---
//* LINKEDIT STEP:
//*
//* NOTE THAT THE TCPACCESS DEVELOPMENT LIBRARIES,
//* SEZADPIL AND SEZACMTX, MUST HAVE BEEN INSTALLED
//*
//*---
//LKED EXEC PGM=HEWL
//SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR
// DD DISP=SHR,DSN=<tcpaccess>.SEZADPIL
// DD DISP=SHR,DSN=<tcpaccess>.SEZACMTX
// DD DISP=SHR,DSN=<tcpaccess>.LOAD
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=VIO,SPACE=(TRK,(10,10))
//*
//* SYSLOD1 HAS EXISTING LOAD MODULE WITH IBM SOCKET ENTRY POINTS
//*

15–10 Customization Guide

SNMP DPI

//SYSLOD1 DD DSN=<application_loadlib>(<application>),DISP=SHR
//*
//* SYSLMOD WILL HAVE NEW LOAD MODULE WITH TCPACCESS ENTRY POINTS
//*
//SYSLMOD DD DSN=<application_newloadlib>(<application>),DISP=SHR
//SYSLIN DD *
 ENTRY CEESTART
 REPLACE CDPIPACK
 REPLACE FDPIPARS
 REPLACE LKPHST
 REPLACE MKDPILIS
 REPLACE MKDPIREG
 REPLACE MKDPIRES
 REPLACE MKDPISET
 REPLACE MKDPITRA
 REPLACE MKDPITRE
 REPLACE PDPIPKT
 REPLACE QUERY@DP
 REPLACE WRITEV
 REPLACE RECV
 REPLACE ACCEPT
 REPLACE BIND
 REPLACE SOCK@CLO
 REPLACE CMXLATE
 REPLACE CONNECT
 REPLACE FCNTL
 REPLACE GETCLIEN
 REPLACE GETDTABL
 REPLACE GTHSTBYA
 REPLACE GTHSTBYN
 REPLACE GETHOSTI
 REPLACE GETHNAME
 REPLACE @GETHOST
 REPLACE GETIBMOP
 REPLACE GETIBMSO
 REPLACE GETNETBY
 REPLACE GETNETAD
 REPLACE GETPEERN
 REPLACE GTSCKNM
 REPLACE GETSOCKO
 REPLACE GIVESOCK
 REPLACE IOCTL
 REPLACE INET@ADD
 REPLACE NTMKDR
 REPLACE NTNTF
 REPLACE INET@NTA
 REPLACE LISTEN
 REPLACE MAXDESC
 REPLACE READ
 REPLACE READV
 REPLACE RECV
 REPLACE RECVFROM
 REPLACE RECVMSG
 REPLACE SELECT
 REPLACE SELECTEX
 REPLACE SEND
 REPLACE SENDMSG
 REPLACE SENDTO
 REPLACE SETIBMOP
 REPLACE SETIBMSO
 REPLACE SETSOCKO
 REPLACE SHUTDOWN
 REPLACE SOCK@DEB
 REPLACE SOCKDBP0
 REPLACE SOCKDOBM
 REPLACE SOCKET

SNMP Agent Configuration 15–11

SNMP DPI

 REPLACE TAKESOCK
 REPLACE TCPERROR
 REPLACE TCPSERRO
 REPLACE WRITE
 REPLACE WRITEV
 REPLACE HTONS
 REPLACE HTONL
 REPLACE NTOHS
 REPLACE NTOHL
 REPLACE @GETHTEN
 REPLACE @ENDHTEN
 REPLACE @SETHTEN
 REPLACE IB$SFLUS
 REPLACE SOCKDOTS
 INCLUDE SYSLOD1(<application>)
/*

JCL to Run the
Application

To run the application, it is necessary to include the SYSTCPD DD statement.
You can use the following JCL to run the application:
//<jobcard>
//*---
//*
//* DPI APPLICATION RUNNING OVER TCPACCESS
//*
//*---
//DPIRUN EXEC PGM=<application>,
// PARM='<parms>'
//STEPLIB DD DISP=SHR,DSN=<application_loadlib>
// DD DISP=SHR,DSN=<tcpaccess>.LINK
// DD DISP=SHR,DSN=<tcpaccess>.LOAD
//SYSPRINT DD SYSOUT=*
//SYSTRACE DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSTCPD DD *
TCPIPJOBNAME <tcpaccess_jobname>
DNRSSID <tcpaccess_ssid>
TRACEDD SYSPRINT
SOCKDEBUG
/*

15–12 Customization Guide

SNMP DPI

Testing Unicenter TCPacess DPI Functionality

DPISAMPL is a batch program for testing the SNMP DPI functionality. It is
packaged as APAR MA65134. When that APAR is applied, the program will be
ready to be executed.

JCL for Testing DPI

The JCL to run DPISAMPL is:
//jobcard
//*
//* DPI SAMPLE, FOR TESTING SNMP DPI AND DPI FUNCTION LIB
//*
//TESTDPI EXEC PGM=DPISAMPL,
// PARM='-d 2 -inet 10.0.64.127 public'
//*
//*
//STEPLIB DD DISP=SHR,DSN=<tcpaccess>.LOAD
// DD DISP=SHR,DSN=<tcpaccess>.LINK
//SYSPRINT DD SYSOUT=*
//SYSTRACE DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSTCPD DD *
TCPIPJOBNAME tcpaccess_jobname
DNRSSID ACSS
TRACEDD SYSPRINT
SOCKDEBUG
/*

The parameters supported by the program are:

-d <n> Debug level. <n> is a value between zero and three, where zero means there will
be no debugging messages issued, and three means all debugging messages will
be issued.

The default is zero.

-inet <ip_address> SNMP agent address. This is the address of the TCP/IP SNMP agent where the
SNMP DPI MIBs are registered.

-entn <enterprise> Enterprise code. This is appended to the following MIB prefix to build the MIBs
being registered:

iso.org.dod.internet.private.enterprise (1.3.6.1.4.1)

The rest of the MIB is 2.1.4.n, where n = 1 - 9.

The default Enterprise Code is 578. Thus, the first SNMP DPI MIB is:

1.3.6.1.4.1.578.2.1.4.1

SNMP Agent Configuration 15–13

SNMP DPI

-all_traps, -std_traps, -ent_traps, -ent_trapse

 SNMP DPI trap tests.

The traps that can be sent are:

-std_traps: Simulation of LINK DOWN, LINK UP, and EGP Neighbor
Loss

-ent_traps: Enterprise Specific traps which include the SNMP DPI
MIBs that the program registers as Variable Bindings

-ent_trapse: Additional traps using Specific Trap numbers 11 – 19

-all_traps: All of the above traps.

 Default: All_traps.

-resp (none | error) Force a bad response. If none, then do not send an SNMP DPI Response packet.
If error, then set an error code in the response packet.

-time n Delay handling by n seconds.

 Default: Zero.

-sysmib Overwrite the SYSTEM MIBs: sysContact, sysName, and sysLocation.

15–14 Customization Guide

SNMP DPI

Compiling MIB Definitions

For those network manager programs that need to compile MIB definitions in
order to issue Get/Set commands, the definitions for the default MIBs used by
DPISAMPL are:
-- MIB created 07/26/99, by
-- JJS, Sterling Software

dpitTCPIPMVS-MIB DEFINITIONS ::= BEGIN

IMPORTS
 enterprises
 FROM SNMPv2-SMI-v1
 DisplayString, DateAndTime
 FROM SNMPv2-TC-v1
 ifIndex
 FROM IF-MIB
 ipForwardDest, ipForwardProto, ipForwardPolicy,
 ipForwardNextHop
 FROM IP-FORWARD-MIB
 tcpConnLocalAddress, tcpConnLocalPort, tcpConnRemAddress,
 tcpConnRemPort, udpLocalAddress, udpLocalPort
 FROM RFC1213-MIB
 Counter, IpAddress, TimeTicks
 FROM RFC1155-SMI
 OBJECT-TYPE
 FROM RFC-1212
 TRAP-TYPE
 FROM RFC-1215;

dpitTCPIPmvsMIB OBJECT IDENTIFIER ::= { dpitProd 2 }
-- Descr
-- The DPI MIB definitions for testing management of
-- a TCP/IP for MVS system.

dpit OBJECT IDENTIFIER ::= { enterprises 578 }
dpitProd OBJECT IDENTIFIER ::= { dpit 6 }
dpitTest OBJECT IDENTIFIER ::= { dpit 2 }
DPItestMIB OBJECT IDENTIFIER ::= { dpitTest 1 }
DPItestEntrMIB OBJECT IDENTIFIER ::= { DPItestMIB 4 }

DPItestEntrMIB0 OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "Test DPI Enterprise MIB 0"
 ::= { DPItestMIB 99 }

DPItestEntrMIB1 OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "Test DPI Enterprise MIB 1"
 ::= { DPItestEntrMIB 1 }

SNMP Agent Configuration 15–15

SNMP DPI

DPItestEntrMIB2 OBJECT-TYPE
 SYNTAX OCTET STRING
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "Test DPI Enterprise MIB 2"
 ::= { DPItestEntrMIB 2 }

DPItestEntrMIB3 OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "Test DPI Enterprise MIB 3"
 ::= { DPItestEntrMIB 3 }

DPItestEntrMIB4 OBJECT-TYPE
 SYNTAX NULL
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "Test DPI Enterprise MIB 4"
 ::= { DPItestEntrMIB 4 }

DPItestEntrMIB5 OBJECT-TYPE
 SYNTAX IpAddress
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "Test DPI Enterprise MIB 5"
 ::= { DPItestEntrMIB 5 }

DPItestEntrMIB6 OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "Test DPI Enterprise MIB 6"
 ::= { DPItestEntrMIB 6 }

DPItestEntrMIB7 OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "Test DPI Enterprise MIB 7"
 ::= { DPItestEntrMIB 7 }

DPItestEntrMIB8 OBJECT-TYPE
 SYNTAX TimeTicks
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "Test DPI Enterprise MIB 8"
 ::= { DPItestEntrMIB 8 }

DPItestEntrMIB9 OBJECT-TYPE
 SYNTAX OCTET STRING
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "Test DPI Enterprise MIB 9"
 ::= { DPItestEntrMIB 9 }

15–16 Customization Guide

SNMP DPI Functions

DPItestEntrMIB10 OBJECT-TYPE
 SYNTAX OCTET STRING
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "Test DPI Enterprise MIB 10"
 ::= { DPItestEntrMIB 10 }

DPItestEntrMIB11 OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "Test DPI Enterprise MIB 11"
 ::= { DPItestEntrMIB 11 }

END

SNMP DPI Functions
This section gives a brief description of the SNMP DPI functions supported by
Unicenter TCPaccess. For more information, refer to the IBM manuals listed
below.

The Standard DPI 1.1 functions are equivalent to IBM DPI library described in
TCP/IP V3R2 for MVS: Programmers Reference (SC31-7135-02), Chapter 5.4: SNMP
DPI Library Routines:

■ mkDPIlist()

■ fDPIparse()

■ mkDPIregister()

■ mkDPIresponse()

■ mkDPIset()

■ mkDPItrap()

■ mkDPItrape()

■ pDPIpacket()

■ query_DPI_port()

For more information on the following supported DPI 1.1 functions, refer to
IBM’s OS/390 eNetwork Communications Server IP Programmer's Reference, Version
2 Release 6.

■ lookup_host()

■ DPIdebug()

■ fDPIset()

■ DPIawait_packet_from_agent()

SNMP Agent Configuration 15–17

SNMP DPI Functions

■ DPIconnect_to_agent_TCP()

■ DPIdisconnect_from_agent()

■ DPIget_fd_for_handle()

■ DPIsend_packet_to_agent()

■ read_dpi_packet_on_fd()

mkDPIlist()

Synopsis
#include <snmp_dpi.h>
#include <types.h>
struct dpi_set_packet *mkDPIlist(packet, oid_name, type, len, value)
struct dpi_set_packet *packet;
char *oid_name;
int type;
int len;
char *value;

Description

Use the mkDPIlist() routine to create the portion of the parse tree that represents
a list of name and value pairs. Each list entry represents a name and value pair,
as would normally be returned in a response packet:

■ If the pointer packet is NULL, a new dpi_set_packet structure is dynamically
allocated and the pointer to that structure is returned. The structure contains
the new name and value pair.

■ If the pointer packet is not NULL, a new dpi_set_packet structure is
dynamically allocated and chained to the list and the new structure contains
the new name and value pair.

■ If an error is detected, the pointer packet is returned to the caller. A NULL
pointer is returned.

Parameters:

packet Specifies either the pointer to a structure dpi_set_packet, or NULL

oid_name Specifies the object identifier of the variable.

type Specifies the type of the value.

len Specifies the length of the value.

value Specifies a pointer to the value.

15–18 Customization Guide

SNMP DPI Functions

The value of type can be the same as for mkDPIset() as defined in the snmp_dpi.h
header file. The dpi_set_packet structure has a next pointer (zero in case of a
mkDPIset() call and is zero upon the first mkDPIlist() call).

The structure is:
struct dpi_set_packet {
 char *object_id;
 unsigned char type;
 unsigned short value_len;
 char *value;
 struct dpi_set_packet *next;
};

fDPIparse()

Synopsis
#include <snmp_dpi.h>
#include <bsdtypes.h>
void fDPIparse(hdr)
struct snmp_dpi_hdr *hdr;

Description

The fDPIparse() routine frees a parse tree, specified by hdr, that was previously
created by a call to pDPIpacket(). You cannot make additional references to the
parse tree that was freed.

There are no return values for fDPIparse().

SNMP Agent Configuration 15–19

SNMP DPI Functions

mkDPIregister()

Synopsis
#include <snmp_dpi.h>
#include <bsdtypes.h>
unsigned char *mkDPIregister(oid_name)
char *oid_name;

Description

Use the mkDPIregister() routine to create a register request packet, where:

 mkDPIregister() Returns a pointer to a static buffer, which holds the packet
contents. The length of the remaining packet is stored in the
first two bytes of the packet.

oid_name Specifies the object identifier of the variable to be registered.
Object identifiers are registered with a trailing dot (.).

Return Values

If successful, mkDPIregister() returns a pointer to a static buffer containing the
packet contents. If an error is detected, a NULL pointer is returned.

mkDPIresponse()

Synopsis #include <snmp_dpi.h>
#include <bsdtypes.h>
unsigned char *mkDPIresponse(ret_code, value_list)
int ret_code;
struct dpi_set_packet *value_list;

Description

The mkDPIresponse() routine creates a response packet, where:

ret_code Specifies the error code to be returned.

value_list Specifies a pointer to a parse tree containing the name, type and
value information to be returned.

Note: Zero indicates no errors.

15–20 Customization Guide

SNMP DPI Functions

The following errors may be returned:

■ SNMP_BAD_VALUE

■ SNMP_GEN_ERR

■ SNMP_NO_ERROR

■ SNMP_NO_SUCH_NAME

■ SNMP_READ_ONLY

■ SNMP_TOO_BIG

Refer to the snmp_dpi.h header file for a description of these messages. If
ret_code returns no error, then the second parameter (value_list) is a pointer to a
parse tree created by mkDPIset(), that represents the name, type, and value of the
information being returned. If an error is indicated, the second parameter is
passed as a NULL pointer. The length of the remaining packet is stored in the
first two bytes of the packet.

Note: The mkDPIresponse() always frees the passed parse tree.

Return Values

If successful, mkDPIresponse() returns a pointer to a static buffer containing the
packet contents (the same buffer used by mkDPIregister()). A NULL pointer is
returned if an error is detected during the creation of the packet.

mkDPIset()

Synopsis
#include <snmp_dpi.h>
#include <bsdtypes.h>
struct dpi_set_packet *mkDPIset(oid_name, type, len, value)
char *oid_name;
int type;
int len;
char *value;

SNMP Agent Configuration 15–21

SNMP DPI Functions

Description

Use the mkDPIset() routine to create the portion of a parse tree that represents a
name and value pair (as would normally be returned in a response packet).

oid_name Specifies the object identifier of the variable.

type Specifies the type of the object identifier. Can be one of the following (defined in
snmp_dpi.h) :

 SNMP_TYPE_COUNTER
SNMP_TYPE_GAUGE
SNMP_TYPE_INTERNET
SNMP_TYPE_NUMBER
SNMP_TYPE_OBJECT
SNMP_TYPE_STRING
SNMP_TYPE_TICKS

len Indicates the length of the value.

value Indicates the pointer to the first byte of the value of the object identifier. The
value parameter is always a pointer to the first byte of the object ID’s value.

mkDPIset() returns a pointer to a dynamically allocated parse tree representing
the name, type, and value information. A NULL pointer is returned if an error is
detected while creating the parse tree.

The parse tree is dynamically allocated, and copies are made of the passed
parameters. After a successful call to mkDPIset(), the application can dispose of
the passed parameters without affecting the contents of the parse tree.

Return Values

mkDPIlset() returns a pointer to a parse tree containing the name, type, and
value information.

15–22 Customization Guide

SNMP DPI Functions

mkDPItrap()

Synopsis
#include <snmp_dpi.h>
#include <bsdtypes.h>
unsigned char *mkDPItrap(generic, specific, value_list)
int generic;
int specific;
struct dpi_set_packet *value_list;

Description

The mkDPItrap() routine creates a TRAP request packet.

generic Specifies the generic field in the SNMP TRAP packet.

specific Specifies the specific field in the SNMP TRAP packet.

value_list Specifies the name and value pair to be placed into the SNMP packet.

The information contained in value_list is passed as the set_packet portion of the
parse tree. The length of the remaining packet is stored in the first two bytes of
the packet.

mkDPItrap() always frees the passed parse tree.

Return Values

If successful, mkDPItrap() returns a pointer to a static buffer containing the
packet contents. This is the same buffer that is used by mkDPIregister(). If packet
creation is unsuccessful, a NULL pointer is returned.

SNMP Agent Configuration 15–23

SNMP DPI Functions

mkDPItrape()

Synopsis
#include <snmp_dpi.h>
#include <types.h>
unsigned char *mkDPItrape(generic, specific, value_list, enterprise_oid)
long int generic; /* 4 octet integer */
long int specific;
struct dpi_set_packet *value_list;
char *enterprise_oid;

Description

Use the mkDPItrape() routine to create an extended trap.

generic Specifies the generic field for the SNMP TRAP packet.

specific Indicates the specific field for the SNMP TRAP packet.

value_list Specifies a pointer to a structure dpi_set_packet that contains one or more
variables to be sent with the SNMP TRAP packet.

 Note: Set to NULL if no variables are to be sent.

enterprise_oid Specifies a pointer to a character string representing the enterprise object ID (in
ASN.1 notation, for example, 1.3.6.1.4.1.2.2.1.4).

 Note: Set to NULL if you want the SNMP agent to use its own enterprise object
ID.

15–24 Customization Guide

SNMP DPI Functions

pDPIpacket()

Synopsis
#include <snmp_dpi.h>
#include <bsdtypes.h>
struct snmp_dpi_hdr *pDPIpacket(packet)
unsigned char *packet;

Description

The pDPIpacket() routine parses the DPI packet passed and returns a parse tree
representing its contents. The parse tree returned is dynamically allocated. It
contains copies of the information within the DPI packet. Once DPIpacket() is
called successfully, the packet can be disposed of, without affecting the contents
of the parse tree. Parse tree structures are defined in the snmp_dpi.h header file.

Return Values

If pDPIpacket() is successful, a parse tree is returned. a NULL pointer is returned
If an error is encountered during the parse.

query_DPI_port()

Synopsis
#include <snmp_dpi.h>
#include <bsdtypes.h>
int query_DPI_port (host_name, community_name)
char *host_name;
char *community_name;

Description

A DPI client uses the query_DPI_port() routine to determine the TCP port
number associated with the DPI. This TCP port number is required to connect()
to the SNMP agent. The port number is obtained through an SNMP GET request.

Return Values

If successful, an integer representing the TCP port number is returned. A -1 is
returned if the port cannot be determined.

SNMP Agent Configuration 15–25

SNMP DPI Functions

lookup_host()

Synopsis
#include <snmp_dpi.h>
unsigned long lookup_host (/* find IP address in network */
 char *hostname_p); /* byte order for this host */

Description

lookup_host() This function returns the IP address in network byte order of a host or IP address
in dot notation. This function is called by DPIconnect_to_agent_TCP.

hostname_p This parameter serves as a pointer to a NULL terminated character string
representing the host name or IP address in dot notation of the host where the
DPI SNMP agent is running.

Return Value

If the lookup_host() function call is successful, it returns the IP address in
network byte order, ready for use in a sockaddr_in structure. If unsuccessful,
zero is returned.

See Also

DPIconnect_to_agent_TCP().

15–26 Customization Guide

SNMP DPI Functions

DPIdebug()

Synopsis
#include <snmp_dpi.h>
void DPIdebug(int level);

Description

Use the DPIdebug() function to turn DPI internal debugging and tracing on or
off. The trace output is sent to the SYSLOG. Refer to the IBM’s OS/390 eNetwork
Communications Server: IP User’s Guide for more information.

The parameter (level) determines the tracing level.

If set to zero, tracing is turned off. Set to any other value, tracing is turned on.
The higher the level is set, the more tracing information is displayed. Each level
includes all lower levels of tracing.

The levels of detail are:

level Tracing Detail Supported

1 Display perror() results and general flow.

2 Display hex dump of data areas.

3 Display before and after socket calls.

Examples

Here are some sample outputs for each level.

Level 1
debug_print_hdr,packet_type=6
cDPIpacket: Major=2, Version=1, Release=1, Id=0, Type=SNMP_DPI_REGISTER
cDPIreg: subtree=1.3.6.1.4.1.578.2.1.4.1., priority=0, timeout=0
 view_selection=No
 bulk_selection=No

Level 2
Dump of 42 byte Outgoing SNMP GET dpiPort.0:
 30 28 02 01 00 04 06 70 75 62 6c 69 63 a0 1b 02
 01 01 02 01 00 02 01 00 30 10 30 0e 06 0a 2b 06
 01 04 01 02 02 01 01 00 05 00

SNMP Agent Configuration 15–27

SNMP DPI Functions

Level 3
Before socket function socket()
After socket function socket() rc=0
Before socket function bind()
After socket function bind() rc=0
Before socket function select()
After socket function select() rc=1
Before socket function recvfrom()
After socket function recvfrom() rc=44

fDPIset()

Synopsis
#include <snmp_dpi.h>
void fDPIset(snmp_dpi_set_packet *packet_p);

Description

Use the fDPIset() function if you need to free a chain of one or more
snmp_dpi_set_packet structures. The parameter, paket_p, is a pointer to the first
snmp_dpi_set_packet structure in a chain.

You can use this function when you are preparing a chain of
snmp_dpi_set_packet structures for a DPI RESPONSE packet, but receive an
error before you can make the response. If you are able to make a DPI response
packet to which you pass the chain of snmp_dpi_set_packet structures, the
mkDPIresponse() function frees the chain of snmp_dpi_set_packet structures.

See Also

fDPIparse(), and mkDPIregister().

15–28 Customization Guide

SNMP DPI Functions

DPIawait_packet_from_agent()

Synopsis
#include <snmp_dpi.h>
int DPIawait_packet_from_agent(/* await a DPI packet */
 int handle, /* on this connection */
 int timeout, /* timeout in seconds */
 unsigned char **message_p, /* receives ptr to data */
 unsigned long *length); /* receives length of data */

Description

The DPIawait_packet_from_agent() function is used at the subagent side to wait
for a DPI packet from the DPI capable SNMP agent.

handle Specifies a handle (obtained with a DPIconnect_to_agent_xxxx() call).

timeout Specifies a timeout value in seconds.

 Valid values are:

-1 Specifies that the function to wait forever for a packet to
arrive.

0 Specifies to only check if a packet is waiting. If no packet is
found, the call returns immediately. If a packet has arrived,
it is returned.

message_p Specifies the address of a pointer that will receive the address of a static DPI
packet buffer or, if there is no packet, a NULL pointer.

length Specifies the address of an unsigned long integer that will receive the length of
the received DPI packet or, if there is no packet, a zero value.

SNMP Agent Configuration 15–29

SNMP DPI Functions

Return Values

If the DPIawait_packet_from_agent() call is successful, a zero (DPI_RC_OK) is
returned. The buffer pointer and length of the caller is set to point to the received
DPI packet and to the length of that packet.

If unsuccessful, a negative integer is returned, which indicates the type of error
that occurred. For more information, see IBM’s OS/390 eNetwork Communications
Server IP Programmer's Reference, Version 2 Release 6, Return Codes from DPI
Transport-Related Functions for a list of possible error codes.

Return Value Description

DPI_RC_NOK Indicates that the DPI code is out-of-sync or
has a bug.

DPI_RC_EOF End of file on the connection. The connection
has been closed.

DPI_RC_IO_ERROR An error occurred with an underlying
select() or recvfrom() call, or a DPI packet
was read that was less than two bytes. DPI
uses the first two bytes to get the packet
length.

DPI_RC_INVALID_HANDLE A bad handle was passed. The handle is
either invalid, or describes a connection that
has been disconnected.

DPI_RC_TIMEOUT No packet was received during the timeout
period.

DPI_RC_PACKET_TOO_LARGE The packet received was too large.

See Also

DPIconnect_to_agent_TCP().

15–30 Customization Guide

SNMP DPI Functions

DPIconnect_to_Agent_TCP()

Synopsis
#include <snmp_dpi.h>
int DPIconnect_to_agent_TCP(/* Connect to DPI TCP port */
 char *hostname_p, /* target hostname/IP address */
 char *community_p); /* community name */

Description

Use the DPIconnect_to_agent_TCP() function at the subagent side to set up a
TCP connection to the DPI capable SNMP agent. During connection processing,
the DPIconnect_to_agent_TCP() function sends an SNMP GET request to the
SNMP agent to retrieve the port number of the DPI port to be used for the TCP
connection. By default, this SNMP GET request is sent to the well-known SNMP
port 161. If the SNMP agent is listening on a port other than port 161, you can set
the SNMP_PORT environment variable to the port number of the SNMP agent.
Use setenv() to override port 161 before using this function.

hostname_p A pointer to a NULL terminated character string representing the host name or
IP address in dot notation of the host where the DPI capable SNMP agent is
running.

community_p A pointer to a NULL terminated character string representing the community
name that is required to get the dpiPort from the SNMP agent via an SNMP GET
request.

SNMP Agent Configuration 15–31

SNMP DPI Functions

Return Values

If successful, a non-negative integer representing the connection is returned. Use
this value as a handle in subsequent calls to DPI transport-related functions. If
unsuccessful, a negative integer is returned identifying the type of error that
occurred. See IBM’s OS/390 eNetwork Communications Server IP Programmer's
Reference, Version 2 Release 6, Return Codes from DPI Transport-Related
Functions for a list of possible error codes.

Return Value Description

DPI_RC_NO_PORT Unable to obtain the dpiPort number. There can be
many reasons for this, for example bad host name, bad
community name, default timeout (nine seconds) before
a response from the agent.

DPI_RC_IO_ERROR An error occurred with an underlying select(), or DPI
wasn’t able to set up a socket (could be due to an error
on a socket(), bind(), connect() call, or other internal
errors).

DPIdisconnect_from_agent()

Synopsis
#include <snmp_dpi.h>
void DPIdisconnect_from_agent(/* disconnect from DPI (agent)*/
 int handle); /* close this connection */

Description

Use the DPIdisconnect_from_agent() function at the subagent side to terminate a
connection to the DPI capable SNMP agent. The handle obtained with a
DPIconnect_to_agent_xxxx() is passed as the parameter.

See Also

DPIconnect_to_agent_TCP().

15–32 Customization Guide

SNMP DPI Functions

DPIget_fd_for_handle()

Synopsis
#include <snmp_dpi.h>
int DPIget_fd_for_handle(/* get the file descriptor */
int handle); /* for this handle */

Description

Use the DPIget_fd_for_handle() function to get the file descriptor for the handle
that was obtained with a DPIconnect_to_agent_TCP() call. Using this function to
retrieve the file descriptor associated with your DPI connections, you can use
either the select or selectex socket calls. The selectex enables you to wait for ECBs
(event control blocks), in addition to a read condition. This is an example of how
an MVS application can wait for notification of the receipt of a modify command
(via and ECB post) or DPI packet simultaneously.

Return Value

If the call is successful, a positive integer representing the file descriptor
associated with the specified handle is returned. If the call is unsuccessful, a
negative integer is returned, which indicates the error that occurred. See IBM’s
OS/390 eNetwork Communications Server IP Programmer's Reference, Version 2
Release 6, Return Codes from DPI Transport-Related Functions for a list of
possible error codes.

DPI_RC_INVALID_HANDLE A bad handle was passed. Either the handle is

not valid, or it describes a connection that has
been disconnected.

See Also

DPIconnect_to_agent_TCP().

SNMP Agent Configuration 15–33

SNMP DPI Functions

DPIsend_packet_to_agent()

Synopsis
#include <snmp_dpi.h>
int DPIsend_packet_to_agent(/* send a DPI packet */
 int handle, /* on this connection */
 unsigned char *message_p, /* ptr to the packet data */
 unsigned long length); /* length of the packet */

Description

Use the DPIsend_packet_to_agent() function at the subagent side to send a DPI
packet to the DPI capable SNMP agent.

handle Specifies the handle obtained with a DPIconnect_to_agent_xxxx() call.

message_p A pointer to the buffer containing the DPI packet to be sent.

length The length of the DPI packet to be sent. The DPI_PACKET_LEN macro is a
useful macro to calculate the length.

Return Values

If successful, a zero (DPI_RC_OK) is returned. If not successful, a negative
integer is returned indicating the kind of error that occurred. See IBM’s OS/390
eNetwork Communications Server IP Programmer's Reference, Version 2 Release 6,
Return Codes from DPI Transport-Related Functions for a list of possible error
codes.

Return Value Description

DPI_RC_NOK Indicates that the DPI code is out-of-sync or
has a bug.

DPI_RC_IO_ERROR An error occurred with an underlying
send(), or the send() failed to send all of the
data on the socket (incomplete send).

DPI_RC_INVALID_ARGUMENT The message_p parameter is NULL or the
length parameter has a value of 0.

DPI_RC_INVALID_HANDLE A bad handle was passed. Either the handle
is not valid, or it describes a connection that
has been disconnected.

15–34 Customization Guide

SNMP DPI Functions

See Also

DPIconnect_to_agent_TCP().

read_dpi_packet_on_fd()

Synopsis
static int read_dpi_packet_on_fd(int fd, /* read DPI packet on fd */
 int type)/* of this type connection */

Description

The function read_dpi_packet_on_fd() reads a DPI packet from a TCP or UDP
connection.

read_dpi_packet_on_fd() can be used with:

■ DPIawait_packet_from_agent

■ DPIconnect_to_agent_TCP

■ DPIdisconnect_from_agent

■ DPIget_fd_for_handle

■ DPIsend_packet_to_agent

Return Values

If the read is successful, read_dpi_packet_on_fd() returns a positive number. If
an error is encountered, read_dpi_packet_on_fd() returns a negative DPI_RC_xxx
return code.

SNMP Agent Configuration 15–35

Chapter

16
Fault Tolerant Network
Configuration

This chapter outlines the configuration information needed to operate Unicenter
TCPaccess in a Fault Tolerant mode.

This chapter discusses the following topics:

■ Fault Tolerant—Introduces fault tolerant networking

■ Multiplexing—Describes multiplexing in Unicenter TCPaccess

■ Router Failures—Describes how Unicenter TCPaccess fault tolerant handles
router failures

■ Multihoming—Describes the use of multihoming

■ Example—Describes an example of fault tolerant networks

■ Virtual IP Addressing—Describes Virtual IP Addressing

■ GateD—Introduces the GateD Daemon

■ Improving Fault Tolerant Reliability—Describes ways to improve reliability
for fault tolerant networks

■ Running the Routing Daemon (GateD)—Describes how to set up and run
GateD

■ Example—Describes sample of fault tolerant configurations

Fault Tolerant Network Configuration 16–1

Unicenter TCPaccess Fault Tolerant Feature

Unicenter TCPaccess Fault Tolerant Feature
Unicenter TCPaccess Fault Tolerant provides high levels of availability and
reliability in network connections. Used with redundant network interface
hardware, Fault Tolerant enables the user to maintain persistent sessions during
a hardware failure or a routing outage or change.

Note: Redundant network interface hardware is required to use this feature.

The two main components of Fault Tolerant Unicenter TCPaccess are:

Multiplexing—the intelligent use of multiple controllers to handle hardware
failures.

Gateway Dæmon (GateD)—Supports Open Shortest Path First (OSPF) and
Routing Information Protocol (RIP) to handle router failures or routing changes.

In addition, the Fault Tolerant feature provides a method for determining
network outages by sampling network activity. In this way, if a network
connection becomes unavailable due to a cable problem or wiring defect,
Unicenter TCPaccess Fault Tolerant addresses the problem and reroutes or
redirects network traffic appropriately.

Multiplexing: Two or more hardware interfaces bound to a single IP address.

Multihoming: Two or more hardware interfaces bound to multiple IP addresses
and executing within the same Unicenter TCPaccess address space.

Note: In this case, multiplex or multihome network controllers are link-level
controllers.

The Fault Tolerant features of Unicenter TCPaccess are completely automatic.
Once configured and running, no operator intervention is required.

Fault Tolerant Limitations

Limitations of Unicenter TCPaccess Fault Tolerant are listed below:

■ Unicenter TCPaccess GateD/OSPF does not support multicast

■ NSC HYPERchannel interfaces only recognize hardware outages. A network
outage may go unreported due to the Internet Protocol (IP) router built in to
these network controller

■ Accurate network outage determination is possible with link-level
controllers supporting CETI and 3172 protocol

16–2 Customization Guide

Multiplexing

Managing Controller Failures

Using multiple controllers, Unicenter TCPaccess Fault Tolerant software can
increase availability and continue communication in cases where a Local
Network Interface (LNI) fails and another LNI is available.

Managing Router Failures

Using multiple network controllers and the gateway daemon (GateD), Unicenter
TCPaccess Fault Tolerant software can increase availability and communication
in cases where network IP routers fail.

GateD manages:

■ Route changes and updates routes to your LAN and WAN within your
Unicenter TCPaccess address space

■ Route changes in cases where channel attached routers are used

MEDIA statement parameters, including ARPIPTIMEOUT and IDLENET,
control how long Unicenter TCPaccess waits to determine outages or issue ARP
attempts at the router layer.

Multiplexing
Unicenter TCPaccess actively samples network activity to detect network
outages. This can happen when a channel error occurs or a network defect is
discovered (that is, bad cable or defective hub). The Address Resolution Protocol
(ARP) is used to dynamically map Internet (IP) and MAC (hardware) addresses.
In addition, the Unicenter TCPaccess SNMP agent sends an interface down trap to
a network management station when either of the above conditions is met. See
the chapter “SNMP Agent Configuration” for information on configuring the
SNMP agent.

When an interface fails in a multiplex configuration, Unicenter TCPaccess
notifies other stations on the LAN of the address of an active network interface
that can be used. In this event, any existing sessions are rerouted to use the active
interface without session interruption. Hosts on the LAN should then update
their ARP tables to point to the active interface. (See A Multiplexing
Environment later in this section). MEDIA statement parameters, including
ARPTIMEOUT and IDLENET, can be configured to increase or decrease the
length of time Unicenter TCPaccess waits to determine network outages.

Fault Tolerant Network Configuration 16–3

Multiplexing

 A Multiplexing Environment

Ethernet

userA userB

LNI1 LNI2

Mainframe

3762-1 3762-2

MVS Host 192.2.3.4

192.2.3.5 192.2.3.6

Configuring the TCPCFGxx Member for Multiplexing

For multiplexing, the TCPCFGxx member requires the following entries:

■ One MEDIA statement

■ One or more NETWORK statements

■ Two or more device statements

■ One or more ROUTE statements

Note: Some software packages for personal computers (PCs) never refresh their
ARP tables. This can cause unexpected results if they are directly connected to a
multiplexed device or host. In order to refresh these ARP tables you must reboot
the PC.

Balancing I/O Traffic

In addition to improving availability, the fault tolerant features improve
performance by balancing I/O traffic across multiplexed controllers.

For outbound sessions, such as large file transfers from the mainframe to
network hosts, Unicenter TCPaccess alternates file transfer output, using the
multiplexed controllers in a round robin fashion. Using multiple controllers
levels the data transfer load and improves throughput performance, especially
for very large file transfers.

16–4 Customization Guide

Router Failures

Router Failures
Using multiple network controllers and the gateway dæmon (GateD), Unicenter
TCPaccess fault tolerant software can increase availability and communication in
cases where network IP routers fail.

GateD manages:

■ Route changes and updates routes to your LAN and wide area network
(WAN) within your Unicenter TCPaccess address space

■ Route changes in cases where channel attached routers are used

MEDIA statement parameters, including ARPIPTIMEOUT and IDLENET,
control how long Unicenter TCPaccess waits to determine outages or issue ARP
attempts at the router layer.

Multihoming
GateD manages your routes in either a multiplexed environment or a
multihomed environment. It can manage multiple routing protocols, including
OSPF, and can instantaneously update routes and maintain sessions during
router failures or channel attached router outages.

Note: In order for a multihoming configuration to work in a fault tolerant
environment, the host addresses must be on separate subnets. If they are not on
separate subnets and you try to use Fault Tolerant, you will lose connections,
since routes cannot be updated on the same local network. The network outage
will be reported by Unicenter TCPaccess in all cases.

In the following fault tolerant diagram, GateD in a Mainframe Multihoming
Configuration, shows how GateD appears in a mainframe multihoming
configuration.

where:

■ hostA and hostB (both are on the MVS host) are on the 191.2.0.0 class B
network

■ hostA is on the 191.2.3.0 subnet

■ hostB is on the 191.2.4.0 subnet

Fault Tolerant Network Configuration 16–5

Multihoming

GateD in a Mainframe Multihoming Configuration

GateD

Ethernet

191.2.3.4 191.2.4.5

ROUTERA ROUTERB

userA userB191.2.6.7

(191.2.3.97) (191.2.4.99)

hostA

Mainframe

(191.2.5.97) (191.2.6.99)

ROUTERC
(191.2.5.98)
(191.2.6.98)

3762

(191.2.6.0)
Ethernet

(191.2.5.0)

Ethernet (191.2.4.0)Ethernet(191.2.3.0)
3762 hostB

191.2.5.6

If the route to network 191.2.4.0 or ROUTERB fails, all traffic for userB is routed
to the mainframe host through network 191.2.3.0 via ROUTERC. GateD is
responsible for broadcasting new routes to other network routers and hosts.

The GTDCFGxx member specifies the routing protocol to be used.

Note: If you use RIP, propagation of new routes may take up to three minutes.

16–6 Customization Guide

Configuration Example

Configuration Example
The following configuration example shows some of the necessary parameters
for the sample fault tolerant setup shown on the preceding page:
IP
 .
 .
 GATED(GTDCFG01)
 FORWARD
 .
MEDIA MSSOPT(NET) MSSDEF(1500) MTU(1500) NAME(ETHER1)
NETWORK IPADDRESS(191.2.3.4)
 SUBNET(255.255.255.0)
* LNI STATEMENTS FOR ETHER1
CETI
 .
 .
 CUTYPE(3762)
 MEDIANAME(ETHER#1)
 DEVADDR(86A)
 .
 .
* LNI STATEMENTS FOR ETHER2
MEDIA MSSOPT(NET) MSSDEF(1500) MTU(1500) NAME(ETHER2)
NETWORK IPADDRESS(191.2.4.5)
 SUBNET(255.255.255.0)
 NAME(ETHER2)
 .
 .
CETI
 .
 .
 CUTYPE(3762)
 MEDIANAME(ETHER#2)
 DEVADDR(8B0)
ROUTE DEST(0.0.0.0) ROUTE(191.2.3.97) MEDIANAME(ETHER1)
ROUTE DEST(0.0.0.0) ROUTE(191.2.4.99) MEDIANAME(ETHER2)

This is the GTDCFG00 member for accessing RIP:
traceoptions none;
/*===*
/* GateD V3.0.3 default configuration file */

/*===*/
traceoptions parse;
rip yes (broadcast;
 sourcegateways 191.2.3.97 191.2.4.99;
) ;
traceoptions general kernel rip update;

Fault Tolerant Network Configuration 16–7

Virtual IP Addressing

Virtual IP Addressing
Static Virtual IP Addressing (VIPA) can be used with Unicenter TCPaccess Fault
Tolerant when Unicenter TCPaccess is running in a multihomed environment.
Static VIPA does not enhance the fault tolerant capabilities of Unicenter
TCPaccess running with a single interface or running multiplexed.

Application dynamic VIPA associates a VIPA with an application and can
effectively be used with Unicenter TCPaccess Fault Tolerant when Unicenter
TCPaccess is running:

■ With a single interface

■ Multiplexed

■ In a multihomed environment

Benefits of Virtual IP Addressing

Running Unicenter TCPaccess in a multihomed configuration with GateD had
two deficiencies. The first is related to connectivity between hosts on a directly
attached subnet. The second is related to routers, which have a higher preference
for attached subnets than host routes.

In the first case, most hosts do not use routing information to send packets when
the destination host is on the same subnet. Instead, hosts often check to see if the
destination IP address is on an attached subnet and if so, send the packet direct
with no intervening routers. Because of this, when a Unicenter TCPaccess
interface goes down in a multihomed configuration, hosts on the same subnet
cannot determine an alternate path to the IP address of the down interface and
all connectivity to that IP address is lost.

In the second case, Unicenter TCPaccess Fault Tolerant sends OSPF and RIP
routing updates when an interface goes down. These routing updates tell the rest
of the routers that Unicenter TCPaccess can no longer reach the subnet with the
down interface but can reach the host IP address of the down interface. When
this routing information is processed by a router on the subnet with the down
interface, the alternate route information for the down host is often ignored,
because as long as the router's interface on the subnet is active, it believes that the
best route to the down interface is to send the packet directly over the subnet.

VIPA solves these problems by creating a virtual subnet within the Unicenter
TCPaccess address space. A virtual subnet means that a NETWORK or
VIPANET statement is defined in the Unicenter TCPaccess configuration
parameters (TCPCFGxx) but the subnet is not related to any real interface (LNI).
The NETWORK statement specifies a host IP address on a subnet that does not
exist anywhere else in the network and the VIPANET statement specifies a range
of IP address that also do not exit anywhere else in the network.

16–8 Customization Guide

Virtual IP Addressing

When a remote host sends a packet to the virtual IP address, it is forced to use IP
routing regardless of whether the host is on a direct attached subnet. Because the
subnet of the destination is different from the remote host’s subnet, the remote
host must use its routing tables to make a decision on the best path to the virtual
IP address. For a host on a direct attached subnet, this may mean that the first
packet in a connection is sent to a router, which in turn either forwards the
packet or sends the host an ICMP redirect if the Unicenter TCPaccess interface on
the direct attached subnet is still active. In either case, the host can establish a
connection with Unicenter TCPaccess regardless of whether the interface on the
direct attached subnet is active.

Detecting Down Interfaces

When a router on a direct attached network detects that a Unicenter TCPaccess
interface is down (by a lack of routing messages), it recalculates the best path to
the virtual IP address. This lets packets sent to this router be rerouted to the
active Unicenter TCPaccess interfaces.

Remote users connecting to Unicenter TCPaccess should connect to the virtual IP
address rather than the real IP address. You only can realize the benefits of using
VIPA when the Unicenter TCPaccess IP address is the virtual IP address. The
best way to implement this is to change the authoritative domain name server to
reference the virtual IP address instead of a real IP address for the Unicenter
TCPaccess host name.

Unicenter TCPaccess usually chooses a static IP address as the source address
when initiating a TCP connection. A dynamic VIPA is only used as the source
address for those sockets that are bound to a dynamic VIPA. UDP and RAW
datagrams will be sent with the real IP address (a requirement for proper
operation of GateD).

Using VIPA with GateD

The use of VIPA does not require GateD, but without GateD, IP routers must be
configured with static paths to the virtual subnet, which can cause lost
connectivity. Contact your routing vendor for advice on configuring any routers
when GateD is not run.

Without GateD, VIPA does not guarantee session persistence for hosts on a direct
attached subnet when the interface on that subnet fails. This is the result of few
or no mechanisms in existence to notify the host that the Unicenter TCPaccess
interface is down, so the virtual IP address can only be reached via another route.
You can solve this problem if the host can monitor routing messages on the
subnet, allowing it to update its routing table as soon as the first router on the
subnet detects the outage and advertises new routes.

Fault Tolerant Network Configuration 16–9

Virtual IP Addressing

The number of active interfaces (loopback, real, and virtual) supported by GateD
is limited to 127. However, if the OSPF routing protocol is being used, this
restriction is relaxed and GateD will support at least 255 active interfaces.

For more information about GateD, read GateD.

Static and Dynamic VIPAs

Unicenter TCPaccess supports two types of VIPAs: static and dynamic. Both
static and dynamic VIPAs can be concurrently active in the same Unicenter
TCPaccess stack. Both static and dynamic VIPAs provide similar benefits in that
both eliminate dependencies on any single interface to the Unicenter TCPaccess
stack.

However, static and dynamic VIPAs differ in how they are activated and used.

 Static VIPAs
Characteristics

■ They are activated during Unicenter TCPaccess initialization or during
UPDATE command processing using the TCPCFGxx MEDIA and
NETWORK statements

■ They can be inactivated during DELETE command processing

■ They are the source IP address of outgoing packets when initiating a TCP
connection

■ They can be moved to a standby host in the event of a primary host failure
by using UPDATE command processing to activate the static VIPA on the
standby host (see Automatic VIPA Recovery for additional information)

■ The number of static VIPAs that can be concurrently active in the same
Unicenter TCPaccess stack is limited only by the range of available IP
addresses

Dynamic VIPAs
Characteristics

■ The range of eligible application dynamic VIPA addresses are defined
during Unicenter TCPaccess initialization or during UPDATE command
processing using the TCPCFGxx VIPANET statement

■ The range of eligible application dynamic VIPA addresses can be deleted
during DELETE command processing

■ An application dynamic VIPA can be activated using the BIND() and
IOCTL() socket API functions

■ An application dynamic VIPA that was activated using the BIND() socket
API function will be automatically inactivated during unbind processing.

■ A dynamic VIPA can be inactivated during DELETE command processing or
using the IOCTL() socket API function

16–10 Customization Guide

Virtual IP Addressing

■ A dynamic VIPA is only used as the source IP address of outgoing packets
for those sockets that are bound to a dynamic VIPA

■ The number of dynamic VIPAs that can be concurrently active in the same
Unicenter TCPaccess stack is limited by the value specified for the
TCPCFGxx IP statement’s MAXVIPA keyword

Using Dynamic VIPAs

Unicenter TCPaccess supports a variation of dynamic VIPA referred to as an
application dynamic VIPA. This allows virtual IP addresses to be activated by
socket applications and associates the VIPA with the application. Using this
function, if the application is moved to another sysplex node on a failure (for
example, via XCF Automatic Restart Management) the VIPA moves with the
application.

VIPA activation is initiated by either:

■ The application using the BIND() socket API function to bind to a particular
IP address

■ By an authorized program using the IOCTL() socket API function

Using Application Dynamic VIPAs

The range of IP addresses eligible for dynamic activation via the BIND() and
IOCTL() socket API functions must be predefined. This is accomplished using
the TCPCFGxx VIPANET statement, which is used to define a subnet in which
requests to activate a VIPA via BIND or SIOCSVIPA IOCTL will be honored.

Note: This subnet should not exist anywhere else in the network.

When an application uses the BIND() socket API function for a specific IP
address, or a BIND IP address is specified using Unicenter TCPaccess Bind
Security configuration parameters, the Unicenter TCPaccess stack under which
the application is running compares the IP address to the list of active IP
addresses. If the IP address is already active (either as a real interface, a static
VIPA, or a dynamic VIPA) on the Unicenter TCPaccess stack, then the BIND()
function succeeds. If the IP address is not active and the IP address is eligible for
dynamic activation (as defined by the TCPCFGxx VIPANET statement), then the
IP address is activated as a dynamic VIPA and the BIND() function succeeds.
Otherwise, the BIND() function returns EADDRNOTAVAIL.

An application dynamic VIPA activated using the BIND() socket API function is
automatically inactivated during unbind processing.

Fault Tolerant Network Configuration 16–11

Virtual IP Addressing

A new IOCTL() socket API function command code named SIOCSVIPA allows
an application to create or delete a dynamic application VIPA on the Unicenter
TCPaccess stack under which the application is running. The application using
the SIOCSVIPA IOCTL must be either APF-authorized or running under a user
ID with root authority. To create an application dynamic VIPA, the requested IP
address must be eligible for dynamic activation (as defined by the TCPCFGxx
VIPANET statement). The SIOCSVIPA IOCTL can be used to delete any dynamic
VIPA, whether it was created by BIND or by a previous SIOCSVIPA IOCTL.

The SIOCSVIPA IOCTL sets non-zero errno and errnojr values to indicate error
conditions. Refer to Unicenter TCPaccess Communications ServerUnprefixed
Messages and Codes for a description of possible error values.

Resolving Dynamic VIPA Conflicts

The following table summarizes how conflicts are resolved when attempting to
define/activate a network IP address (either as a real interface, static VIPA, or
dynamic VIPA), when the IP address is already active on the Unicenter
TCPaccess stack under which the attempt is made.

First
Action

Second
Action

Result

BIND () BIND () Second BIND () succeeds, but no new VIPA is
created.

BIND () IOCTL () IOCTL () fails but the application associated with the
IOCTL () is still able to use the network address.

BIND () NETWORK NETWORK statement validation fails.

IOCTL () BIND () BIND () succeeds, but no new VIPA is created.

IOCTL () IOCTL () Second IOCTL () fails.

IOCTL () NETWORK NETWORK statement validation fails.

NETWORK BIND () Second BIND () succeeds, but no new VIPA is
created.

NETWORK IOCTL () IOCTL () fails but the application associated with the
IOCTL () is still able to use the network address.

NETWORK NETWORK Second NETWORK statement validation fails.

16–12 Customization Guide

Virtual IP Addressing

Automatic VIPA Recovery

Automatic VIPA Recovery is the ability to switch routed IP traffic between two
MVS hosts transparently, from the remote standpoint. No change in host name
or refresh of DNS is required, making the convergence time very quick in a
properly tuned fault-tolerant network. you can use this procedure to redirect
active traffic or to permit a standby host to assume the workload in the event of a
primary host failure. The OSPF routing protocol must be active to achieve
failover using the Virtual IP Address (VIPA) mechanism.

Note: Active TCP Connections are not continued and must be reestablished once
convergence has occurred. Connectionless (UDP) traffic will be switched without
interruption presuming that equivalent services are active on the standby host
(for example. NFS).

Environment

The following descriptions use two Unicenter TCPaccess stacks, each using
CLAW interfaces to CIP 7209 routers.

The initial configurations are:

■ Stack-1 has a VIPA address of 10.0.99.1, with a cost of 10

■ Stack-2 has a VIPA address of 10.0.98.1, with a cost of 5

When the UPDATE command is issued to Stack-2, the 10.0.98.1 VIPA interface is
deleted, and a duplicate 10.0.99.1 VIPA address is added to Stack 2 (picking up
the lower cost). No changes are required to the GateD config.

With the OSPF times for 'hello', 'retransmit' and 'dead' set to 1, 1 and 3
respectively, the network converges in about four seconds after the point the
stack has completed processing the UPDATE command. Traffic is then routed to
the stack with the lowest cost for that VIPA address which is now Stack-2.

Note: There is no requirement for the Stack-1 VIPA to be deleted or be inactive
in order for this failover to occur.

If the costs are reversed (Stack-1 has cost 5) then Stack-2 can be active in hot
standby mode with both stacks possessing the same VIPA address. In the event
of a failure of Stack-1, traffic is rerouted to Stack-2 as soon as the OSPF dead
interval elapses on the adjacent routers.

The GateD configuration must contain an interface statement for vr0 for proper
notification of VIPA interface changes to occur. If the vr0 interface is not defined
to OSPF, results are unpredictable and most likely the network will not converge.

Fault Tolerant Network Configuration 16–13

Virtual IP Addressing

Other Unicenter TCPaccess PARM configuration members retain their normal
values.

Configurations

The configurations in this example are listed below:

Configuration Description

TCPCFGF1 TCP configuration for Stack-1 as VIPA address 10.0.99.1

GTDCFGF1 Gated configuration for Stack-1 (cost 10)

TCPCFGF2 TCP configuration for Stack-2 as VIPA address 10.0.98.1

GTDCFGF2 Gated configuration for Stack-2 (cost 5)

TCPCFGD2 Deletes VIPA address 10.0.98.1 (Stack-2's)

Adds VIPA address 10.0.99.1 (Stack-1's)

This simulates a failover of Stack-1

Use this only with F STACK2,UPDATE CNFG(D2)

TCPCFGA2 Deletes VIPA address 10.0.99.1 (Stack-1's)

Adds VIPA address 10.0.98.1 (Stack-2's)

This simulates restarting Stack-1

Use this only with F STACK2,UPDATE CNFG(A2)

TCPCFGD1 Deletes VIPA address 10.0.99.1

This removes VIPA on Stack-1 for testing

Use this only with F STACK1,UPDATE CNFG(D1)

TCPCFGA1 Adds VIPA address 10.0.99.1

This restores VIPA on Stack-1 for testing

Use this only with F STACK1,UPDATE CNFG(A1)

Copies of these members are provided as examples. You should evaluate all
parameters before implementing these examples in your own environment.

16–14 Customization Guide

Virtual IP Addressing

TCPCFGF1

TCP configuration for Stack-1 as VIPA address 10.0.99.1

* Description: TCP task group configuration for TCPaccess *
* Stack-1 startup *

* Define the virtual medium
MEDIA VIRTUAL MTU(16384) NAME(LOOPBACK) MSSOPT(ALWAYS) MSSDEF(16384)
MEDIA VIRTUAL MTU(4096) NAME(VIPA) MSSOPT(ALWAYS) MSSDEF(4096)
NETWORK IPADDRESS(10.0.99.1)
 SUBNET(255.255.255.0)
* Define the physical medium
MEDIA CLAW MTU(4096) NAME(CLAW1) ASSIST
 MSSOPT(ALWAYS) MSSDEF(4096)
*
NETWORK IPADDRESS(10.0.77.21)
 SUBNET(255.255.255.0)
*
CLAW DEVADDR(2A1C)
 BUFSIZE(65535)
 IBUF(4)
 OBUF(4)
 RESTART(60)
 HOSTNAME(CISCO2L)
 WSNAME(CISCOWS2)
 PACKED
 START
* Define the physical medium
MEDIA CLAW MTU(4096) NAME(CLAW2) ASSIST
 MSSDEF(4096) MSSOPT(ALWAYS)
* Define the host
NETWORK IPADDRESS(10.0.75.15)
 SUBNET(255.255.255.0)
*
CLAW DEVADDR(2B10)
 BUFSIZE(65535)
 IBUF(4)
 OBUF(4)
 RESTART(30)
 HOSTNAME(CISCOF)
 WSNAME(CISCOWS)
 START
 PACKED
* Define gateway
ROUTE DEST(0.0.0.0) ROUTE(10.0.77.6) MEDIA(CLAW1)
ROUTE DEST(0.0.0.0) ROUTE(10.0.75.6) MEDIA(CLAW2)
* Define the transport provider parameters
TCP MAXRCVBUF(524288)
 MAXSNDBUF(524288)
 DEFRCVBUF(131072)
 DEFSNDBUF(131072)
 MAXLTSND(64000)
 MAXLTRCV(64000)
 MAXQSEND(16)
 MAXQRECV(16)
 DELAYACK(2)
 FASTRX(3)
 MAXRXMIT(18)
 MAXRXTIME(500)
 MINRXTIME(75)
 MINDEV(90)
 SCALE(0)
 TIMEWAIT(10)

Fault Tolerant Network Configuration 16–15

Virtual IP Addressing

 PORTUSE(1:4095)
 PORTASGN(4096:8191)
UDP MAXRCVBUF(524288)
 MAXSNDBUF(524288)
 DEFRCVBUF(64000)
 DEFSNDBUF(64000)
 PORTUSE(1:4095)
 PORTASGN(4096:8191)
 MAXLTSND(64000)
 MAXLTRCV(64000)
 MAXQSEND(16)
 MAXQRECV(16)
RAW MAXRCVBUF(64000)
 MAXSNDBUF(64000)
* Set IP options
IP GATED(GTDCFGF1)
 FORWARD

GTDCFGF1

Gated configuration for Stack-1 (cost 10)
traceoptions all except parse timer update;
traceoptions none;

routerid 10.0.77.21;

rip no {
 broadcast;
};

ospf yes {
 traceoptions protocol update;
 area 10 {
 interface vr0 nonbroadcast cost 10 {
 retransmitinterval 255;
 hellointerval 255;
 pollinterval 255;
 routerdeadinterval 765;
 };
 interface cl0 nonbroadcast {
 routers {
 10.0.77.6 eligible;
 };
 retransmitinterval 1;
 hellointerval 1;
 pollinterval 1;
 routerdeadinterval 3;
 };
 interface cl1 nonbroadcast {
 routers {
 10.0.75.6 eligible;
 };
 retransmitinterval 1;
 hellointerval 1;
 pollinterval 1;
 routerdeadinterval 3;
 };
 };
};

16–16 Customization Guide

Virtual IP Addressing

TCPCFGF2

TCP configuration for Stack-2 as VIPA address 10.0.98.1

* Description: TCP task group configuration for TCPaccess *
* Stack-2 startup *

* Define the virtual medium
MEDIA VIRTUAL MTU(16384) NAME(LOOPBACK) MSSOPT(ALWAYS) MSSDEF(16384)
MEDIA VIRTUAL MTU(4096) NAME(VIPA) MSSOPT(ALWAYS) MSSDEF(4096)
NETWORK IPADDRESS(10.0.98.1)
 SUBNET(255.255.255.0)
* Define the physical medium
MEDIA CLAW MTU(4096) NAME(CLAW1) ASSIST
 MSSOPT(ALWAYS) MSSDEF(4096)
*
NETWORK IPADDRESS(10.0.77.22)
 SUBNET(255.255.255.0)
*
CLAW DEVADDR(2A1E)
 BUFSIZE(65535)
 IBUF(4)
 OBUF(4)
 RESTART(60)
 HOSTNAME(CISCO2M)
 WSNAME(CISCOWS2)
 PACKED
 START
* Define the physical medium
MEDIA CLAW MTU(4096) NAME(CLAW2) ASSIST
 MSSDEF(4096) MSSOPT(ALWAYS)
* Define the host
NETWORK IPADDRESS(10.0.75.16)
 SUBNET(255.255.255.0)
*
CLAW DEVADDR(2B12)
 BUFSIZE(65535)
 IBUF(4)
 OBUF(4)
 RESTART(30)
 HOSTNAME(CISCOG)
 WSNAME(CISCOWS)
 START
 PACKED
* Define gateway
ROUTE DEST(0.0.0.0) ROUTE(10.0.77.6) MEDIA(CLAW1)
ROUTE DEST(0.0.0.0) ROUTE(10.0.75.6) MEDIA(CLAW2)
* Define the transport provider parameters
TCP MAXRCVBUF(524288)
 MAXSNDBUF(524288)
 DEFRCVBUF(131072)
 DEFSNDBUF(131072)
 MAXLTSND(64000)
 MAXLTRCV(64000)
 MAXQSEND(16)
 MAXQRECV(16)
 DELAYACK(2)
 FASTRX(3)
 MAXRXMIT(18)
 MAXRXTIME(500)
 MINRXTIME(75)
 MINDEV(90)
 SCALE(0)
 TIMEWAIT(10)

Fault Tolerant Network Configuration 16–17

Virtual IP Addressing

 PORTUSE(1:4095)
 PORTASGN(4096:8191)
UDP MAXRCVBUF(524288)
 MAXSNDBUF(524288)
 DEFRCVBUF(64000)
 DEFSNDBUF(64000)
 PORTUSE(1:4095)
 PORTASGN(4096:8191)
 MAXLTSND(64000)
 MAXLTRCV(64000)
 MAXQSEND(16)
 MAXQRECV(16)
RAW MAXRCVBUF(64000)
 MAXSNDBUF(64000)
* Set IP options
IP GATED(GTDCFGF2)
 FORWARD

GTDCFGF2

Gated configuration for Stack-2 (cost 5)
traceoptions ospf mark protocol task kernel internal;
traceoptions none;

routerid 10.0.77.22;

rip no {
 broadcast;
};

ospf yes {
 area 10 {
 interface vr0 nonbroadcast cost 5 {
 retransmitinterval 100;
 hellointerval 100;
 pollinterval 100;
 routerdeadinterval 300;
 };
 interface cl0 nonbroadcast {
 routers {
 10.0.77.6 eligible;
 };
 retransmitinterval 1;
 hellointerval 1;
 pollinterval 1;
 routerdeadinterval 3;
 };
 interface cl1 nonbroadcast {
 routers {
 10.0.75.6 eligible;
 };
 retransmitinterval 1;
 hellointerval 1;
 pollinterval 1;
 routerdeadinterval 3;
 };
 };
};

16–18 Customization Guide

Virtual IP Addressing

TCPCFGD2

Deletes VIPA address 10.0.98.1 (Stack-2s)

Adds VIPA address 10.0.99.1 (Stack-1s)

This simulates a failover of Stack-1

Note: Use this only with F STACK2,UPDATE CNFG(D2)

* Description: TCP task group configuration for TCPaccess *

* Define the virtual medium
DELETE NETWORK IPADDR(10.0.98.1) MEDIANAME(VIPA)
DELETE MEDIA NAME(VIPA)
* Define the virtual medium
MEDIA VIRTUAL MTU(4096) NAME(VIPA) MSSOPT(ALWAYS) MSSDEF(4096)
NETWORK IPADDRESS(10.0.99.1)
 SUBNET(255.255.255.0)

TCPCFGA2

Deletes VIPA address 10.0.99.1 (Stack-1's)

Adds VIPA address 10.0.98.1 (Stack-2's)

This simulates restarting Stack-1

Use this only with F STACK2,UPDATE CNFG(A2)

* Description: TCP task group configuration for TCPaccess *

* Define the virtual medium
DELETE NETWORK IPADDR(10.0.99.1) MEDIANAME(VIPA)
DELETE MEDIA NAME(VIPA)
* Define the virtual medium
MEDIA VIRTUAL MTU(4096) NAME(VIPA) MSSOPT(ALWAYS) MSSDEF(4096)
NETWORK IPADDRESS(10.0.98.1)
 SUBNET(255.255.255.0)

Fault Tolerant Network Configuration 16–19

Virtual IP Addressing

TCPCFGD1

Deletes VIPA address 10.0.99.1

This removes VIPA on Stack-1 for testing

Note: Use this only with F STACK1,UPDATE CNFG(D1)

* Description: TCP task group configuration for TCPaccess *

* Define the virtual medium
DELETE NETWORK IPADDR(10.0.99.1) MEDIANAME(VIPA)
DELETE MEDIA NAME(VIPA)

TCPCFGA1

Adds VIPA address 10.0.99.1

This restores VIPA on Stack-1 for testing

Note: Use this only with F STACK1,UPDATE CNFG(A1)

* Description: TCP task group configuration for TCPaccess *

* Define the virtual medium
MEDIA VIRTUAL MTU(4096) NAME(VIPA) MSSOPT(ALWAYS) MSSDEF(4096)
NETWORK IPADDRESS(10.0.99.1)
 SUBNET(255.255.255.0)

16–20 Customization Guide

GateD

GateD
Unicenter TCPaccess uses the gateway dæmon (GateD) application to implement
open systems’ interior and exterior routing protocols within the local network.
With the use of GateD, Unicenter TCPaccess functions as a router on the network
and quickly detects changes in the routing environment and dynamically acts
upon the information quickly enough to keep sessions from being interrupted or
delayed.

This section describes what routing protocols are and provides information
about the two routing protocols supported by GateD:

■ OSPF

■ RIP

Routing Protocols

The function of a routing protocol is to choose a path for sending data to a
destination. Static routing uses a routing table to specify IP addresses for hosts
and gateways. This type of routing is used for simple networks or networks
whose configuration is rarely changed.

Dynamic routing protocols allow routing choices to be made according to
current network conditions. GateD is best used on networks where node or
gateway changes occur frequently, otherwise static routes are effective and use
no CPU or bandwidth in route determination and propagation.

GateD is a dynamic routing application that collects information and makes
routing choices based on that information. GateD uses an Interior Gateway
Protocol (IGP) such as OSPF or RIP to accomplish this. An IGP is any protocol
that interior gateways use to communicate with each other, exchanging routing
and reachability information.

RIP

The Routing Information Protocol (RIP) is one of the most widely used IGPs. It
was originally implemented in the routed dæmon program, a precursor to the
GateD application. The routed dæmon was widely distributed with UNIX BSD
systems and because of that, RIP has become a popular IGP. However, it does
have some technical limitations.

RIP is a distance vector routing protocol. It sorts machines into two categories,
active and passive, according to whether the machine advertises its routes
(active) or simply listens and updates its routes based on those advertisements
(passive). Generally, gateways are active and hosts are passive.

Fault Tolerant Network Configuration 16–21

GateD

Active gateways advertise a routing table every 30 seconds. The routing table
consists of pairs where a pair is an IP network address and the distance (metric)
to that network. A hop count metric is used to measure the distance to a
destination. The hop count is the number of gateways that a datagram passes
through along the path to its destination.

For RIP, a hop count of 16 means the destination is unreachable. After three
minutes with no updates, a router is marked down and all routes through it are
given metric 16. After another two minutes without updates, those routes are
removed.

Note: RIP does not pass subnet masks. If you have different subnet masks
throughout your network, you should not use RIP.

RIP is documented in RFCs 1058 and 1723.

OSPF

Open Shortest Path First (OSPF) is a link-state routing protocol that uses the
Shortest Path First (SPF) algorithm. During operation, OSPF tests the status of all
neighbor gateways and periodically broadcasts this link status information to all
other gateways. When link status information is received, each gateway updates
its map of the network, marking links up or down. When a link status changes,
the gateway automatically recomputes routes to determine the optimal paths to
all destinations. The OSPF protocol is fully described in RFC 1583.

An overall picture of the networks is maintained in a topological database. It
contains the link states (known as Link State Advertisements, or LSAs) from all
the routers in the same area.

The actual link bandwidth consumed by OSPF is less than that consumed by RIP.
OSPF consumes more memory than RIP, but the use of area partitioning can save
memory. (Area partitioning breaks the network into a backbone and areas so
active hosts and routers need to keep track of less of the network.) In general,
OSPF consumes less CPU time than RIP, due to RIP’s frequent updates.

OSPF can operate within a hierarchy. The largest entity in the hierarchy is the
Autonomous System (AS), which is a collection of networks under a common
administration. An AS is divided into a number of areas. Each area is a group of
contiguous networks and attached hosts. Sometimes the term domain is used to
describe a portion of the network and is often used interchangeably with AS.

16–22 Customization Guide

GateD

The following diagram shows a simple, three-area OSPF network with a
contiguous backbone.

 Three-Area OSPF Network

Backbone

Area 1 Area 2

Router Router

Area 0

Router

Network Network

In order to exchange information between areas of a backbone, the areas must be
contiguous. To be contiguous, all hosts and/or routers exchange information
between autonomous systems using direct or virtual links (routers). If a direct
link is unavailable, a virtual link can be used. A virtual link is an indirect link
through backbone routers that share links between non-backbone areas.

The following diagram shows an OSPF network with a virtual link. To keep the
backbone contiguous, a virtual link through Area 2 is defined such that if a link
on the backbone were to crash, virtual links through other routers would keep
traffic moving between Area 1, Area 3 and Area 4.

R1, R2, R4, and R5 are internal routers. These routers are directly connected to
networks within their areas.

Fault Tolerant Network Configuration 16–23

GateD

In the following diagram, R6 and R3, along with their links, comprise the
backbone (Area 0).

Rx = routers
Nx = Networks (or subnetworks)
Hx = Hosts

The class B Network address for this autonomous system is 191.2.0.0

The Area 1 subnetwork address is 191.2.1.0
The Area 2 subnetwork address is 191.2.2.0 and 191.2.3.0
The Area 3 subnetwork address is 191.2.4.0
The Area 4 subnetwork address is 191.2.5.0

The R1 address is 191.2.1.1
The R2 addresses are 191.2.2.1 and 191.2.3.1
The R3 address is 191.2.6.1
The R4 address is 191.2.4.1
The R5 address is 191.2.5.1

H1 is FDDI at 191.2.1.10
H2 is token ring at 191.2.2.10
H3 is ethernet at 191.2.3.10

 OSPF Network Configuration with Virtual Link

Area 2

Area 3

Area 4

R1 R2

R3

R4

R5

R6

N3

N4

N5

Area 1

H2H1

N1 N2

gated
ptask

or or
tr0fd0

H3
or

en0

16–24 Customization Guide

GateD

GateD Example

GateD is configured in member GTDCFG00 of the PARM data set. The sample
shown here is member GTDCFG01, which was created and referenced in the
TCPCFGxx configuration IP statement. For more information on configuring
GateD, read GateD Configuration - GTDCFGxx.

If Unicenter TCPaccess is R6 in the diagram, here is a sample configuration:
traceoptions ospf general kernel mark ;
interfaces (
 options scaninterval 15;
);

rip off ;
ospf yes (
 area 0.0.0.1 (
 interface fd0 nonbroadcast (
 pollinterval 60;
 routers (
 191.2.1.1 eligible ;
);
 retransmitinterval 5; /* 5 sec. between LSA rexmits */
 hellointerval 6; /* Issue hello every 6 sec. */
 routerdeadinterval 24; /* Dead if > 24 sec w/o hello */
);
);
 area 0.0.0.2 (
 interface tr0 nonbroadcast (
 pollinterval 60;
 routers (
 191.2.2.1 eligible ;
);
 retransmitinterval 5;
 hellointerval 6;
 routerdeadinterval 24;
);
 interface en0 nonbroadcast (
 pollinterval 60;
 routers (
 191.2.3.1 eligible ;
);
 retransmitinterval 5;
 hellointerval 6;
 routerdeadinterval 24;
);
);
 backbone (
 virtuallink neighborid 191.2.6.1
 transitarea 0.0.0.2 (/* virtual link through area 2 */
 retransmitinterval 5;
 hellointerval 6;
 routerdeadinterval 24;
);
);
);

Note: fd0 reflects the interface for FDDI tr0 reflects the interface for token ring
en0 reflects the interface for Ethernet

Fault Tolerant Network Configuration 16–25

GateD

With the configuration shown on the previous page, if the route from R1 were to
fail, GateD would update the routes to reflect the virtual link through R2 in Area
2 for all routes that were using R1. In this manner, connections that were made
on the FDDI subnet (Area 1) could be routed across the Token Ring or Ethernet
subnetwork (Area 2) via the R2 router to get to Areas 3 and 4.

Note: Area 0.0.0.1 specifies Area 1, not a host 0.0.0.1. It is not related to the actual
network or subnet address. 0.0.0.1 is a valid OSPF area number.

The GateD parameters retransmitinterval, hellointerval, and routerdeadinterval
must have the same value wherever OSPF is running in your network. If GateD
fails to route properly, review the network router OSPF configurations for
possible discrepancies.

Non-Broadcast Multi-Access

Unicenter TCPaccess does not presently support IP multicasting. Therefore, most
interfaces supported by Unicenter TCPaccess must be defined as non-broadcast
interfaces on a Non-Broadcast Multi-Access (NBMA) media. Since an OSPF
broadcast media must support IP multicasting, any broadcast-capable media that
does not support IP multicasting must be configured as a non-broadcast
interface.

A non-broadcast interface supports any of the standard interface parameters,
plus the two described below:

pollinterval time Before adjacency is established with a neighbor, OSPF packets are sent
periodically at the specified pollinterval. This usually is a multiple of the
hellointerval parameter value.

routers By definition, it is not possible to send broadcast packets to discover OSPF
neighbors on a non-broadcast interface. Therefore, all neighbors must be
configured. The list includes one or more neighbors and an indication of their
eligibility to become the designated router for the area.

16–26 Customization Guide

Improving Fault Tolerant Reliability

Improving Fault Tolerant Reliability
There are two MEDIA statement parameters in the TCPCFGxx member of the
PARM data set that can improve the reliability of your Fault Tolerant
configuration.

TCP Parameters

These TCPCFGxx MEDIA statement parameters can be used to improve your
Fault Tolerant implementation:

ARPTIMEOUT Specifies the time an ARP cache is considered valid. This is
useful in a multiplex environment to change the length of time between ARP
table refreshes.

IDLENET Changes the length of time the network will be probed or sampled for
network activity. This timer can affect network outages that include bad wires or
cables.

For more information on the MEDIA statement, read the MEDIA Statement.

Running the Routing Daemon (GateD)

GateD Routing Protocol

The GateD application implements multiple routing protocols allowing
Unicenter TCPaccess to function as a router in a multihomed environment.
GateD also provides Unicenter TCPaccess with improved knowledge of the state
of routers and routes in the attached networks allowing for a faster response to
routing outages, whether multihomed or not.

Note: Some versions of GateD handle RIP, HELLO, BGP, EGP and OSPF (non-
multicast mode) routing protocols. Currently, Unicenter TCPaccess officially
supports RIP and OSPF, although HELLO, BGP, and EGP are in the product.

For complete information on configuring GateD, see the chapter “GateD
Configuration Member (GTDCFGxx).”

Fault Tolerant Network Configuration 16–27

Running the Routing Daemon (GateD)

GTDCFGxx Member

The GateD configuration member (GTDCFGxx) is specified by the GATED
parameter on the IP statement. You must modify it for your use. For more
information, see the chapter “GateD Configuration Member (GTDCFGxx).” This
is the default configuration for GateD:
/*==*/
/* GateD V3.0.3 default configuration file */
/* Warning - Make sure no line numbers exist in */
/* columns 73-80 */
/*==*/
traceoptions general kernel;
rip yes;

This GateD configuration example demonstrates parameter settings:
OSPF and RIP example:

traceoptions ospf general mark protocol;
rip yes {
 broadcast;
};
ospf yes {
 backbone {
 interface fd0 nonbroadcast {
 routers {
 138.42.180.129 eligible;
 };
 pollinterval 10;
 routerdeadinterval 30;
 };
 interface tr0 nonbroadcast {
 routers {
 138.42.170.129 eligible;
 };
 pollinterval 10;
 routerdeadinterval 30;
 };
 };
};
static {
 default gateway 138.42.236.233;
};

A complete description of the GateD configuration file, GTDCFGxx, is provided
in the chapter “GateD Configuration Member (GTDCFGxx).”

If only one interface is defined and GateD is configured to run RIP, GateD does
not send data and becomes just a RIP listener; GateD does not broadcast.

Note: GateD does not support SNMP or multicasting.

16–28 Customization Guide

Running the Routing Daemon (GateD)

Configuring Virtual IP Addressing

Virtual IP Addressing (VIPA) support is configured in two simple steps:

1. In TCPCFGxx, add a MEDIA statement that specifies VIRTUAL and a
NETWORK statement that specifies an IP address that is on a non-existent
subnet.
MEDIA NAME(VIRTUAL1) VIRTUAL
NETWORK HOST(138.42.175.3)
 SUBNET(255.255.255.0)

2. In GTDCFGxx, define the virtual interface as passive.
interfaces {
 interface vr0 passive ;
} ;
rip yes {
 interface vr0 noripout ;
} ;

Note: Virtual interfaces are named with a prefix of vr. Therefore, the first three
virtual interfaces are named vr0, vr1 and vr2.

Update your name servers so that the IP address for the Unicenter TCPaccess
host name references the virtual IP address instead of the real IP address. Notify
users of the change of IP address if they specify the IP address directly.

VIPA Configuration Examples

The following are excerpts of a TCPCFGxx member for VIPA.

* Member: xxxx.xxxx.PARM(TCPCFG00)
* Description: TCP task group configuration

* Optionally redefine LOOPBACK media parms.
MEDIA NAME(LOOPBACK)
 MTU(4352)
 MSSOPT(NET)
 MSSDEF(4352)
* DEFINE VIPA address
NETWORK HOST(138.42.183.9)
 SUBNET(255.255.255.0)
 NAME('VIRTUAL NETWORK')
 MEDIANAME(LOOPBACK)
* Define the real physical medium
MEDIA FDDI
 MTU(4352)
 MSSOPT(NET)
 MSSDEF(4352)
 NAME(FDDI)
* Define the host
NETWORK IPADRESS(138.42.180.9)
 SUBNET(255.255.255.0)
* Define the network interface
LCS DEV(2C00) NAME(LCS1) CUTYPE(3762)
LINK LCSNAME(LCS1)

Fault Tolerant Network Configuration 16–29

Running the Routing Daemon (GateD)

* Define router
ROUTE DEST(0.0.0.0) ROUTE(138.42.180.129)
* Take the defaults for TCP, UDP, RAW

Below is the configuration member for GateD used in the above example:
/*===*/
 /* GateD V3.0.3 Virtual IP Support Configuration File
 /* */
 /* Warning - make sure that no line numbers exist in
 /* columns 73-80
 /*===*/
 interfaces {
 interface vr0 passive ;
 };
 routerid 138.42.183.9 ;
 rip yes {
 broadcast ;
 interface vr0 noripout ;
 };
 traceoptions mark kernel ;

16–30 Customization Guide

Example of a Fault Tolerant Configuration

Example of a Fault Tolerant Configuration
In the example in this section, the MVS system is running Unicenter TCPaccess
with GateD support and two Cisco 7000 channel attachments. The Unicenter
TCPaccess address space has three IP addresses associated with it: Interface A,
Interface B, and VIPA. Each Channel Interface Processor (CIP) has a network
defined as well as one VIPA. Each host address (the VIPA and the two CIP
addresses) is in a separate subnet on the 192.1.1.0 network. This class C network
(192.1.1.0) is subdivided by various settings of the subnet masks.

The GateD configuration shows the routerid as 192.1.1.49 (VIPA) and the other
networks that can be reached: 192.1.1.16, 192.1.1.32, 191.1.0.0 and 10.1.1.0.

In the following example, the Cisco routers are defined as eligible in the GateD
configuration.

 Eligible Cisco Routers in GateD Configuration

TCPaccess

VIPA

CLAW BCLAW A

Cisco A

7000

Cisco B

7000

TCP/IP

192.1.1.17

191.1.2.143 191.1.2.146

192.1.1.46192.1.1.30

192.1.1.32

192.1.1.49

192.1.1.33

(Network)(Network)
192.1.1.16

(191.1.2.148 IP Standby)(191.1.2.148 IP Standby)

191.1.2.0

The Cisco router configurations show the real Token Ring interface IP addresses
(191.1.1.143 (interface A) and 191.1.2.146 (interface B)), plus a standby address
(191.1.2.148) on both A and B. Clients on the network would use this as a router
address; it allows each of the Cisco routers to act as a hot standby for each other.
In addition, the Cisco configuration is set up so that the routers filter IGRP (used
on the network) to OSPF (used between the Cisco router and Unicenter
TCPaccess).

Fault Tolerant Network Configuration 16–31

Example of a Fault Tolerant Configuration

Since Unicenter TCPaccess does not support multicasting, these routes are
explicitly defined in the routers to find the MVS VIPA network.

Host Addresses

These are the Unicenter TCPaccess network addresses:

192.1.1.17 Interface A; specify this in the NETWORK and CLAW statements in
the TCPCFGxx member.

192.1.1.33 Interface B; specify this in the NETWORK and CLAW statements in
the TCPCFGxx member.

192.1.1.49 VIPA; specify this in the NETWORK statement in the TCPCFGxx
member and in routerid in the GTDCFGxx member.

Subnet Addresses

These are the subnet addresses of the Cisco 7000 configuration:

192.1.1.16 Subnet address of interface A; specify this in the networks statement
of the GTDCFGxx member.

192.1.1.32 Subnet address of interface B; specify this in the networks statement of
the GTDCFGxx member.

192.1.1.48 Subnet address of VIPA; specify this in the ip route statement of the
CIP configuration file.

Network and Gateway Addresses

These are the network and gateway addresses:

191.1.0.0 Token Ring network; specify this in the networks statement of the
GTDCFGxx member.

192.1.1.30 Cisco CIPA interface; specify this in the router statement of the
GTDCFGxx member and in the ROUTE statement for interface A in
the TCPCFGxx member and in the Cisco CIPA interface statement
configuration file.

192.1.1.46 Cisco CIPB interface; specify this in the router statement of the
GTDCFGxx member and in the ROUTE statement for interface A in
the TCPCFGxx member and in the Cisco CIPB interface statement
configuration file.

16–32 Customization Guide

Example of a Fault Tolerant Configuration

Backbone Network Addresses

These are the backbone network addresses of the Cisco 7000 Configuration.
Specify them in the CIP configuration file:

191.1.2.143 Cisco Token Ring interface on Cisco A router.

191.1.2.146 Cisco Token Ring interface on Cisco B router.

191.1.2.148 Cisco virtual standby address for token ring interfaces on Cisco A
and Cisco B routers.

Unicenter TCPaccess Configuration

This section provides an example of the TCPCFGxx configuration for use with
the Cisco 7000.
/* TCPCFGxx NETWORK, LNI and ROUTE statements */
MEDIA VIRTUAL
 NAME(vipa)
 MTU(4096)
 MSSDEF(4096)
 MSSOPT(ALWAYS)
NETWORK IPADDRESS(192.1.1.49)
 SUBNET (255.255.255.240)
MEDIA CLAW
 NAME(TOKENA)
 MTU(4096)
 MSSDEF(4096)
 MSSOPT(ALWAYS)
NETWORK IPADDRESS(192.1.1.17)
 SUBNET (255.255.255.240)
CLAW DEVADDR(F90)
 HOSTNAME(MVSA)
 WSNAME(CLAWA)
MEDIA CLAW
 NAME(TOKENB)
 MTU(4096)
 MSSDEF(4096)
 MSSOPT(ALWAYS)
NETWORK IPADDRESS(192.1.1.33)
 SUBNET (255.255.255.240)
CLAW DEVADDR(F20)
 HOSTNAME(MVSB)
 WSNAME(CLAWB)
ROUTE DEST(0.0.0.0) ROUTE(192.1.1.30) MEDIANAME(TOKENA)
ROUTE DEST(0.0.0.0) ROUTE(192.1.1.46) MEDIANAME(TOKENB)

Fault Tolerant Network Configuration 16–33

Example of a Fault Tolerant Configuration

GateD Configuration

This section provides an example of GateD configuration for the Cisco 7000.
/* gated config for example of 2 cisco cips on class c network */
traceoptions general mark protocol update ;
options noresolve ;
interfaces
{
 interface vr0 passive ;
} ;
routerid 192.1.1.49 ;
rip off ;
ospf yes
{
 backbone
 {
 networks
 {
 192.1.1.16 mask 255.255.255.240 ;
 192.1.1.32 mask 255.255.255.240 ;
 192.1.1.48 mask 255.255.255.240 ;
 191.1.0.0 mask 255.255.0.0 ;
 10.1.1.0 mask 255.255.255.0 ;
 } ;
 authtype 0 ;
 interface vr0 nonbroadcast cost 1
 {
 retransmitinterval 5 ;
 hellointerval 6 ;
 priority 1 ;
 pollinterval 6 ;
 routerdeadinterval 24 ;
 } ;
 interface c10 nonbroadcast cost 1
 {
 retransmitinterval 5 ;
 hellointerval 6 ;
 priority 1 ;
 pollinterval 6 ;
 routerdeadinterval 24 ;
 routers
 {
 192.1.1.30 eligible ;
 } ;
 } ;
 interface cl1 nonbroadcast cost 1
 {
 retransmitinterval 5 ;
 hellointerval 6 ;
 priority 1;
 pollinterval 6 ;
 routerdeadinterval 24 ;
 routers
 {
 192.1.1.46 eligible ;
 } ;
 } ;
 } ;
} ;

16–34 Customization Guide

Example of a Fault Tolerant Configuration

CIP Configuration Examples

This section provides examples of CIP configuration. Read the Cisco
documentation for default values and specific CIP configuration information.
The examples of CIP configurations shown here are for illustrative purposes
only.
CIP-A

>CIP-A#wr t
>Building configuration...
>
>Current configuration:
>!
>version 11.2
>service udp-small-servers
>service tcp-small-servers
>!
>hostname CIP-A
>!
>enable password cisco
>!
>!
>interface TokenRing0/0
>ip address 10.1.1.168 255.255.255.0 secondary
>ip address 191.1.2.143 255.255.0.0
>no ip redirects
>ip route-cache
>ring-speed 16
>multiring ip
>standby 1 track Channel2/0
>standby 1 ip 191.1.2.148
>!
>interface TokenRing0/1
>no ip address
>shutdown
>!
>interface TokenRing0/2
>no ip address
>shutdown
>!
>interface TokenRing 0/3
>no ip address
>shutdown
>!
>interface Ethernet1/0
>no ip address
>shutdown
>!
>interface Ethernet1/1
>no ip address
>shutdown
>!
>interface Channel2/0ip address 192.1.1.30 255.255.255.240
>ip route-cache cbus
>ip ospf network non-broadcast
>ip ospf hello-interval 6
>no keepalive
>channel-protocol S4
>claw 0100 90 192.1.1.17 MVSA CLAWA TCPIP TCPIP broadcast
>!
>router ospf 1
>network 192.1.1.0 0.0.0.255 area 0
>network 191.1.0.0 0.0.255.255 area 0
>neighbor 192.1.1.17 priority 1

Fault Tolerant Network Configuration 16–35

Example of a Fault Tolerant Configuration

>default-information originate
>default-metric 50
>!
>router igrp 1
>redistribute ospf 1
>passive-interface Channel2/0
>network 10.0.0.0
>network 191.1.0.0
>default-metric 56 2000 255 255 1500
>!
>ip default-network 192.1.1.0
>ip route 192.1.1.48 255.255.255.240 192.1.1.17 200
>!
>!
>line con 0
>line aux 0
>transport input all
>line vty 0 4
>password cisco
>login
>!
>end

CIP-B
>Building configuration...
>!
>Current configuration:
>!
>version 11.2
>service udp-small-servers
>service tcp-small-servers
>!
>hostname CIP-B
>!
>enable password cisco
>!
>!
>interface TokenRing0/0
>ip address 10.1.1.169 255.255.255.0 secondary
>ip address 191.1.2.146 255.255.0.0
>no ip redirects
>ip route-cache
>ring-speed 16
>multiring ip
>standby 1 track Channel2/0
>standby 1 ip 191.1.2.148
>!
>interface TokenRing0/1
>no ip address
>shutdown
>!
>interface TokenRing0/2
>no ip address
>shutdown
>!
>interface TokenRing 0/3
>no ip address
>shutdown
>!
>interface Ethernet1/0
>no ip address
>shutdown
>!
>interface Ethernet1/1
>no ip address
>shutdown

16–36 Customization Guide

Example of a Fault Tolerant Configuration

>!
>interface Channel2/0
>ip address 192.1.1.46 255.255.255.240
>ip route-cache cbus
>ip ospf network non-broadcast
>ip ospf hello-interval 6
>no keepalive
>channel-protocol S4
>claw 0100 90 192.1.1.33 MVSB CLAWB TCPIP TCPIP broadcast
>!
>interface Channel2/1
>no ip address
>no keepalive
>shutdown
>!
>router ospf 1
>network 192.1.1.0 0.0.0.255 area 0
>network 191.1.0.0 0.0.255.255 area 0
>neighbor 192.1.1.33 priority 1
>default-information originate
>default-metric 50
>!
>router igrp 1
>redistribute ospf 1
>passive-interface Channel2/0
>network 191.1.0.0
>network 10.0.0.0
>default-metric 56 2000 255 255 1500
>!
>ip default-network 192.1.1.0
>ip route 192.1.1.48 255.255.255.240 192.1.1.33 200
>!
>!
>line con 0
>line aux 0
>transport input all
>line vty 0 4
>password cisco
>login
>!

Note: The hellointerval, pollinterval, and routerdeadinterval must have the same
value in the GTDCFGxx member and in the CIP definitions for OSPF to operate
properly.

Fault Tolerant Network Configuration 16–37

Chapter

17 GateD Configuration—GTDCFGxx

This chapter outlines the configuration information needed to configure the
GateD routing protocol.

Note: The Unicenter TCPaccess Communications Server supports the RIP and
OSPF protocols.

This chapter discusses the following topics:

■ GateD Configuration Member (GTDCFGxx)—Introduces the GateD
configuration member

■ Statement Classes—Describes GateD statement classes

■ Statement Primitives—Describes the GateD statement primitives

■ Directive Statements—Describes the GateD directive statements

■ Trace Statements—Describes the GateD trace statements

■ Options Statements—Describes the GateD options statements

■ Interfaces Statements—Describes the GateD interfaces statements

■ Definition Statements—Describes the GateD definition statements

■ Protocol Statements—Describes the GateD protocol statements

GateD Configuration—GTDCFGxx 17–1

GateD Configuration Member (GTDCFGxx)

GateD Configuration Member (GTDCFGxx)
Use the GTDCFGxx member to specify configuration parameters for the GateD
routing protocol. To activate GateD, specify GATED(xxxx) on the IP statement,
where xxxx is the GTDCFGxx member you want to use.

The GateD configuration member is very different from most other configuration
files for Unicenter TCPaccess. It consists of a sequence of statements:

■ Each terminated by a semi-colon (;)

■ Statements are composed of tokens separated by white space (any
combination of blanks, tabs, and newlines)

■ Comments use the C style comment that starts with a /* and continues until it
reaches */

Note: Multicasting and SNMP are not supported by GateD in Unicenter
TCPaccess, although these features are discussed in this section.

GateD relies heavily on functions and features native to UNIX operating systems.
These functions and features are emulated on MVS by Unicenter TCPaccess or by
the SAS/C runtime library. References to the UNIX kernel in this section refer to
Unicenter TCPaccess itself and not the MVS operating system.

For information about various function routines generally native to UNIX refer
to:

■ Unicenter TCPaccess Communications Server C/Socket Programmer Reference

■ RPC/XDR Programmer Guide

■ SAS/C Library Reference, Second Edition, Volumes 1 and 2

■ The man pages on UNIX

Note: The man pages are UNIX system dependent and may not be the same
under all UNIX implementations.

Virtual IP Addressing is available with Fault Tolerant operation. For more
information, see Virtual IP Addressing in the chapter “Fault Tolerant Network
Configuration.”

17–2 Customization Guide

Statement Classes

Statement Classes
There are eight classes of statements. The first two classes, directives and trace,
can be specified in the configuration file in any order. The remaining six classes
must be specified in the order shown.

directives Are immediately acted upon by the parser and are used to specify included files
and the directory in which they reside. Unlike other statements that terminate
with a semi-colon (;), directive statements terminate with a newline.

trace Control tracing options.

options Allow specification of some global options.

interface Specify interface options.

definition Specify options, the autonomous system and martian networks.

protocol Enable or disable protocols and set protocol options.

route Are defined by route statements.

control Define routes that are imported from routing peers and routes that are exported
to these peers.

Statement Primitives
The primitives that can be used in the GateD statements are described below and
outlined in the sections that follow.

host Any host. A host can be specified by its IP address or by a domain name. If a
domain name is specified that has multiple IP addresses, it is considered an
error. The host bits in the IP address must be non-zero.

network Any network. A network may be specified by its IP address or a network name.
The host bits in a network specification must be zero.

Note: default can also be used to specify the default network (0.0.0.0).

destination Any host or network.

GateD Configuration—GTDCFGxx 17–3

Statement Primitives

dest_mask Any host or network with an optional mask:
all
network
network mask mask
network mask-length bits
host host

A mask is a dotted quad specifying which bits of the destination are significant.
All can be used to specify that any IP address can be matched. The number of
contiguous bits may be used instead of an explicit mask.

autonomous system A number between 1 and 65534 assigned by the Internet Assigned Numbers
Authority to represent an autonomous system.

gateway A gateway must be a host on an attached network.

interface An interface can be specified by IP address, domain name, or interface name.

Interface names for Unicenter TCPaccess are assigned as follows:

fd0 for FDDI.

tr0 for Token Ring.

hy0 for HYPERchannel.

en0 for ethernet.

cl0 for CLAW.

vr0 for virtual.

dv0 for dynamic VIPA.

Additional interfaces have the same name incremented by one (that is, a second
ethernet interface would be en1).

To force GateD to use a specific device, you must use the routerid statement. See
Definition Statements for more information.

gateway_list A list of one or more gateways.

interface_list A list of one or more interface names, wildcard names (names without a number)
or addresses, or the token all, which refers to all interfaces.

17–4 Customization Guide

Directive Statements

preference Determines the order of routes to the same destination in the routing table.
GateD allows one route to a destination per protocol/per autonomous system. In
the case of multiple routes, the route to use is chosen by preference, which is a
number between 0 and 255, with zero being the most preferred and 255 being the
least preferred.

In case of a preference tie, if the two routes are from the same protocol and from
the same autonomous system, GateD chooses the route with the lowest metric.
Otherwise, GateD chooses the route with the lowest numeric next-hop gateway
address.

metric A valid metric for the specified protocol.

Directive Statements
Use directive statements to specify included files and the directory in which they
reside. Unlike other statements that terminate with a semi-colon (;), directive
statements terminate with a newline. Directive statements are acted upon
immediately by the parser.

This statement causes the specified file to be parsed completely before resuming
with this file:

%include "ddn:ddname(MEMBER)"

Nesting is supported up to 10 levels.
options gendefault;

%include “ddn:sysparm(GTDRIP)”
traceoptions none;

If a member named GTDRIP in a data set in the sysparm DD concatenation exists
with this data:
rip yes;

the above example will parse as follows:
options gendefault;
rip yes;
traceoptions none;

GateD Configuration—GTDCFGxx 17–5

Trace Statements

Trace Statements
Trace statements control tracing options for GateD. This is how trace statements
are used:
traceoptions traceoption [traceoption [...]]
 [except traceoption [traceoption [...]]];

■ If none is the only option specified, tracing is turned off

■ If except is specified, flags listed before it are turned on and flags listed after it
are turned off. Use this to turn on all but a few flags

The trace flags are described below:

all Turns on all of the tracing options below except nostamp.

none Turns off tracing.

except A toggle mechanism.

Flags listed before are turned on and flags listed after are turned off.

general Turns on internal, external and route.

internal Turns on internal errors and informational messages.

external Turns on external errors.

nostamp Do not timestamp all messages in the trace file.

mark Outputs a message to the trace log every 10 minutes to insure GateD is still
running.

task Turns on task scheduling, signal handling and packet reception.

timer Turns on timer scheduling.

parse Tokens the parser recognizes in the configuration file.

route Sets tracing to the GateD routing table.

kernel Sets tracing to the kernel's routing table.

bgp Sends and receives Border Gateway Protocol (BGP) packets.

Can be modified by update and protocol.

17–6 Customization Guide

Options Statements

egp Sends and receives Exterior Gateway Protocol (EGP) packets.

Can be modified by update and protocol.

rip Sends and receives Routing Information Protocol (RIP) packets.

Can be modified by update.

hello Sends and receives HELLO packets.

Can be modified by update.

icmp Sends and receives ICMP redirect packets.

Can be modified by update.

Redirects processed are traced under the route option.

protocol Provides messages about protocol state machine transitions when used with
EGP, BGP, or OSPF.

update Traces the contents of protocol packets.

Options Statements
The options statement allows specification of some global GateD options. This is
how options statements are used:
options option_list;

noinstall Do not change kernel's routing table.

Useful for verifying configuration files. gendefault [preference preference]
[gateway gateway] BGP and EGP neighbors should cause the internal generation
of a default route when up.

By default, this route is not installed in the kernel's routing table, but may be
announced by other protocols. If a gateway is specified, the route is installed in
the kernel pointing to that gateway.

Announcement is controlled by referencing the special protocol default.

nosend Do not send any packets. This allows running GateD on a live network to test
protocol interactions without actually participating in the routing protocols.

The packet traces in the GateD log can be examined to verify that GateD is
functioning properly. This is useful for RIP and HELLO.

GateD Configuration—GTDCFGxx 17–7

Interfaces Statements

Note: Currently this does not yet apply to BGP packets.

noresolv Do not try to resolve symbolic names into IP addresses by using the host
network tables or Domain Name System.

Note: This is intended for systems where a lack of routing information could
cause a DNSlookup to hang.

syslog [upto log_level] log_level

 Controls the amount of data GateD logs via syslog on systems where
setlogmask() is supported.

 The log_levels and other terminology are as defined in the setlogmask(3) man
page. The default is equivalent to syslog upto info. See syslog.h for level names
in syslog member in H library.

Interfaces Statements
Use this syntax to specify interface options:
interfaces {
 options [strictifs] [scaninterval time] ;
 interface interface_list interface_options ;
 define address [broadcast broadaddr | pointopoint lcladdr]
 [netmask netmask] [multicast];
} ;

options Sets some global options related to interfaces.

Options are:

strictifs Indicates that it is a fatal error to reference an interface in
the configuration file that is not listed in a define statement
or not present when GateD is started.

 Without this option, a warning message is issued and
GateD continues.

scaninterval time Specifies how often GateD scans the kernel interface list for
changes.

 The default is every 15 seconds on most systems, 60
seconds on systems that pass interface status changes
through the routing socket (that is, BSD 4.4).

Note: GateD also scans the interface list on receipt of a PPOST USER.

17–8 Customization Guide

Interfaces Statements

interface Sets interface options on the specified interfaces. An interface_list is all or a list of
interface names (see the warning about interface names in the interface entry of
the table in Statement Primitives), domain names, or numeric addresses.
interface_options are:

preference pref Sets the preference for routes to this interface when it is up,
defaults to zero.

down preference pref Sets the preference for routes to this interface when GateD
believes it is down due to lack of received routing
information, defaults to 120 seconds.

passiv Prevents GateD from changing the preference of the route
to this interface if it believes it is down due to lack of
received routing information.

simplex Defines an interface as unable to hear its own broadcast
packets.

 Note: Currently defining an interface as simplex is
functionally equivalent to defining it as passive.

reject Specifies that the address loopback interfaces that match
these criteria will be used as the local address when
installing reject routes in the kernel.

 Note: Should only be used with systems based on BSD 4.3
Tahoe or earlier that have installed a reject/blackhole
pseudo interface.

blackhole Specifies that the address loopback interfaces that match
these criteria will be used as the local address when
installing blackhole routes in the kernel.

 Note: Should only used with systems based on BSD 4.3
Tahoe or earlier that have installed a reject/blackhole
pseudo interface.

GateD Configuration—GTDCFGxx 17–9

Interfaces Statements

define Defines interfaces that may not be present when GateD is started. GateD
considers it an error to reference a non-existent interface in the configuration file.

This clause allows specification of that interface so it can be referenced in the
configuration file.

Definition keywords are:

broadcast broad_addr Defines the interface as broadcast capable (that is, Ethernet
and Token Ring) and specifies the broadcast address.

pointopoint local_addr

 Defines the interface as a point-to-point interface (that is,
SLIP and PPP) and specifies the address on the local side.
For this type of interface, the interface_addr specifies the
address of the remote host.

An interface not defined as broadcast or point-to-point is assumed to be non-
broadcast multiaccess (NBMA).

netmask subnetmask Specifies the non-standard subnet mask to be used on this

interface. This is currently ignored on pointopoint interfaces.

multicast Specifies that the interface is multicast capable (NBMA),
such as an X.25 network.

17–10 Customization Guide

Definition Statements

Definition Statements
Definition statements specify options, the autonomous system, and martian
networks.

The following definition statement sets the autonomous system of this router to
autonomous system. This option is required if BGP or EGP are in use.
autonomoussystem autonomous system;

The following definition statement sets the router identifier for use by the BGP
and OSPF (Open Shortest Path First) protocols.

The default is the address of the first interface encountered by GateD.

■ The address of a non-POINTOPOINT interface is preferred over the local
address of a POINTOPOINT interface and an address on a loopback
interface that is not the loopback address (127.0.0.1) is most preferred.

■ This statement forces GateD to use a specific device. (For more information,
see the interface parameter in Statement Primitives).
routerid host;

Note: It is strongly recommended that you use a routerid definition.

The martians statement defines a list of martian addresses about which all
routing information is ignored. The martian_list is a semicolon-separated list of
symbolic or numeric hosts with optional masks. See the dest_mask entry in
Statement Primitives.

You can specify the allow parameter to explicitly allow a subset of a range that
was disallowed.
martians {
 martian_list
};

GateD Configuration—GTDCFGxx 17–11

Protocol Statements

Protocol Statements
A protocol statement enables or disables the use of a protocol and controls
protocol options. These statements can be specified in any order.

For all protocols, the preference option controls the choice of routes learned via
this protocol or from this autonomous system in relation to routes learned from
other protocols or autonomous systems.

The default metric used when propagating routes learned from other protocols is
specified with defaultmetric, which itself defaults to the highest valid metric for
this protocol. For many protocols this signifies a lack of reachability.

For distance vector IGPs with no explicit connections or authentication (RIP and
HELLO) and redirects (ICMP), the trustedgateways clause supplies a list of
gateways providing valid routing information; routing packets from other
gateways are ignored. This defaults to all gateways on the attached networks.

Routing packets can be sent not only to the remote end of point-to-point links
and the broadcast address of broadcast-capable interfaces, but also to specific
gateways if they are listed in a sourcegateways clause and yes or on is specified.
If nobroadcast is specified, routing updates are sent only to gateways listed in the
sourcegateways clause, and not to the broadcast address.

Use the interface clause to:

■ Disable transmission and reception of routing packets for a particular
protocol

■ Override an interface clause that disables sending or receiving protocol
packets for specific peers with the trustedgateways and sourcegateways
clauses

For exterior protocols (BGP, EGP), the autonomous system advertised to the peer
is specified by the global autonomoussystem clause unless overridden by the
asout parameter. The incoming autonomous system number is not verified
unless peeras is specified.

Specifying metricout fixes the outgoing metric for all routes propagated to this
peer. If the peer does not share a network, use interfaces to specify which
interface address to use when communicating with this peer, and use gateway to
specify the next hop to use for all routes learned from this peer. An internal
default is generated when routing information is learned from a peer unless the
nogendefault parameter is specified.

Any protocol can have a traceoptions clause, which enables tracing for a
particular protocol, group, or peer.

17–12 Customization Guide

Protocol Statements

These are the allowable protocol-specific options:

all general task kernel

internal external protocol route

update timer

RIP Protocol Configuration

The following information describes how to configure GateD for RIP (Routing
Information Protocol).

Note: If the RIP clause is not specified, the default is rip on.
rip yes | no | on | off [{
 broadcast;
 nobroadcast;
 nocheckzero;
 preference preference;
 defaultmetric metric;
 interface interface_list [noripin] [noripout]
 [metricin metric] [metricout metric]
 [version 1]|[version 2 broadcast]
 [authentication [none | password]];
...
 trustedgateways gateway_list;
 sourcegateways gateway_list;
 traceoptions traceoptions;
}] ;

yes | no | on | off Turns RIP on or off. If yes or on is specified, RIP assumes nobroadcast if there is
only one interface, and broadcast if there is more than one.

broadcast nobroadcast The nobroadcast option specifies that RIP packets will only be sent to gateways
listed in the sourcegateways clause, if there are any.

 The broadcast option specifies that RIP packets will always be generated.

Note: Using broadcast with only one interface is useful only when propagating
static routes or routes learned from another protocol. This causes data packets to
travel across the same network twice, which may be tolerable in certain
configurations.

nocheckzero Specifies that RIP should not make sure that the reserved fields in RIP packets
are zero.

preference Controls the choice of routes learned via this protocol or from this autonomous
system in relation to routes learned from other protocols or autonomous systems.

 Default preference is 100.

GateD Configuration—GTDCFGxx 17–13

Protocol Statements

defaultmetric Specifies the default metric used when propagating routes learned from other
protocols.

Defaults to the highest valid metric for this protocol.

Default metric is 16.

interface interface_list [noripin] [noripout] [metricin] [metricout] [version 1]
[version 2 [multicast | broadcast]] [authentication]

Disables transmission and reception of routing packets for a particular protocol.
Overrides an interface clause that disables sending or receiving protocol packets
for specific peers with trustedgateways and sourcegateways clauses. Default
metricout is zero.

Default metricin is the kernel interface metric plus one (the default RIP hop
count).

Default authentication type is NONE (this only applies to RIP-2 packets, and is
ignored for RIP-1 packets).

If a password is specified, the authentication type used is SIMPLE. The password
should be a quoted string with zero to 16 characters.

trustedgateways Overrides an interface clause that disables sending or receiving protocol packets
for specific peers.

sourcegateways Overrides an interface clause that disables sending or receiving protocol packets
for specific peers.

traceoptions Enables tracing for a particular protocol, group, or peer. If the version is specified
as or defaults to one, RIP version 2 packets are never sent except in response to a
v2 POLL packet.

If the version is specified as 2, RIP version 2 packets are sent to the broadcast
address, unless the method is explicitly specified.

17–14 Customization Guide

Protocol Statements

OSPF Protocol Configuration

The section describes how to configure GateD for the OSPF protocol.

Note: If the OSPF clause is not specified, the default is ospf off.

The OSPF statement is shown below.
ospf yes | no | on | off [{
 [defaults {
 preference preference ;
 cost cost ;
 tag [tag | as [as_tag]] ;
 type 1|2 ;
 }] ;
 [exportlimit routes ;]
 [exportinterval time ;]
 [traceoptions traceoptions ;]
 [monitorauthkey authkey ;]
 [area area | backbone
 {
 authtype 0 | 1 | none | simple ;
 stub [cost cost];
 networks { network [mask mask] ; } ;
 stubhosts { host cost cost ; } ;
 interface interface [cost cost] {
 [enable | disable] ;
 retransmitinterval time ;
 transitdelay time ;
 priority priority ;
 hellointerval time ;
 routerdeadinterval time ;
 authkey auth_key ;
 } ;
 interface interface nonbroadcast [cost cost] {
 pollinterval time ;
 routers { gateway [eligible] ... } ;
 [enable | disable] ;
 retransmitinterval time ;
 transitdelay time ;
 priority priority ;
 hellointerval time ;
 routerdeadinterval time ;
 authkey auth_key ;
 } ;
 ;]
 virtuallink neighborid routerid transitarea area {
 [enable | disable] ;
 retransmitinterval time ;
 transitdelay time ;
 priority priority ;
 hellointerval time ;
 routerdeadinterval time ;
 authkey auth_key ;
 } ;
 . . .
}] ;

GateD Configuration—GTDCFGxx 17–15

Protocol Statements

area area | backbone An area is a group of contiguous networks and attached hosts. It is a dotted quad
or a number between 1 and 42949672955.

Area zero is always referred to as the backbone. An OSPF backbone is
responsible for distributing routing information between areas. It consists of all
area border routers, networks not wholly contained in any area, and their
attached routers.

authtype { 0 |1 | none | simple }

1 or simple turns on simple password authorization.

0 or none is no authorization.

stub [cost cost] Denotes a stub area.

 It is not valid with the backbone parameter.

networks { network [mask mask] }

Specifies the scope of the area. This can be a network or subnetwork and mask.

stubhosts { host cost cost }

Directly attached hosts and their costs.

17–16 Customization Guide

Protocol Statements

interface interface [nonbroadcast] [cost cost]

[enable | disable]

retransmitinterval time

[transitdelay time]

 [priority priority]

hellointerval time

 routerdeadinterval time

pollinterval time

 routers { gateway [eligible]}

[authkey auth_key]

An interface is specified with an address, a name, a wildcard name (name
without any number), or all.

Multiple interface clauses can be specified with different parameters; the
parameters used are accumulated from the interface clauses. If a parameter is
specified more than once, the instance with the most specific interface reference
is used.

The order of precedence is address, name, wildcard_name, all.

virtuallink neighborid routerid

transitarea area

[enable | disable]

retransmitinterval time

[transitdelay time]

[priority priority]

hellointerval time

routerdeadinterval time

virtuallink Virtual links are used by OSPF to maintain a contiguous backbone.

 This option is used only with the backbone parameter.

GateD Configuration—GTDCFGxx 17–17

Protocol Statements

defaults

preference preference Controls the choice of routes learned via this protocol or from this autonomous
system in relation to routes learned from other protocols or autonomous systems.

cost cost The cost used when exporting GateD routes to OSPF as ASEs.

tag [tag | as [as_tag]] The OSPF tag (an unsigned 31-bit number) placed on all routes exported by
GateD into OSPF.

 When tag as [as_tag] is used, tag fields are automatically generated and the
as_tag field is assigned, if specified.

type { 1 | 2 }] GateD exports routes to OSPF as type 1 ASEs by default.

 Use type 2 to override the default.

exportlimit routes Specifies how many ASEs GateD exports to OSPF at one time.

exportinterval time Specifies (in seconds) how often GateD exports ASEs to OSPF.

monitorauthkey authkey

 Used for authorization of ospfmon, the OSPF monitor command.

authkey is one to eight decimal digits separated by periods, a one to eight byte
hexadecimal string preceded by 0x, or a one to eight character string in double
quotes.

traceoptions Enable tracing for a particular protocol, group, or peer.

yes | no | on | off Turns the OSPF protocol handling on or off.

17–18 Customization Guide

OSPF Statement Sub-Parameters:

authkey auth_key Used for route authorization. auth_key is one to eight decimal digits separated
by periods, a one to eight byte hexadecimal string preceded by 0x, or a one to
eight character string in double quotes.

cost cost A number between 0 and 65535 specifying an OSPF internal cost. Specified by
the network administrator based on any relevant data.

Default: One.

[enable | disable] Enables or disables this interface for OSPF.

Default: enable.

hellointerval time Time between hellos.

neighborid routerid For a virtual link, the host name or address of the router on the other end of the
virtual link.

nonbroadcast Denotes that the interface is a non-broadcast multi-access (NBMA) device.

pollinterval time For NBMA devices, the number of seconds between polling a dead interface.

priority priority A number between 0 and 255 specifying the priority of becoming the designated
router on this interface.

retransmitinterval time Time between LSA retransmits.

routerdeadinterval time Time without hellos before router is called dead.

routers { gateway [eligible] }

 Lists the routers on this interface.eligible specifies that the router is eligible to be
the Designated Router for the area.

Used only for NBMA devices.

transitarea area For a virtual link, the area through which the link passes.

transitdelay time Estimate of seconds to transit a linkstate update.

GateD Configuration—GTDCFGxx 17–19

Chapter

18
Inter-User Communications
Vehicle (IUCV) Sockets

This chapter provides descriptions of the Inter-User Communications Vehicle
(IUCV) sockets for Unicenter TCPaccess.

This chapter discusses the following topics:

■ IUCV Sockets—Describes the IUCV sockets for Unicenter TCPaccess
Communications Server

■ ''C'' Socket Replacement Library—Describes the C socket replacement
library, the IUCV interface for C programs

■ IUCV Socket Compatibility—Describes IUCV socket compatibility with
applications written for IBM’s TCP/IP API running over the Unicenter
TCPaccess server stack

■ Configuration Information—Provides configuration information for
Unicenter TCPaccess for IUCV

■ Converting From IBM TCP/IP—Describes how to convert code from IBM
TCP/IP programs

■ Converting From API/Link—Describes converting code from API/Link
programs

■ Compiling/Linking C Applications Using IUCV—Provides information and
JCL examples for C applications

■ Starting and Stopping IUCV Address Space—Describes control of the IUCV
address space

■ Limitations and Restrictions—Describes the limitations of the Unicenter
TCPaccess IUCV implementation

■ Additional References—Lists references for more information about IUCV

Inter-User Communications Vehicle (IUCV) Sockets 18–1

IUCV Sockets

IUCV Sockets
With Unicenter TCPaccess runtime support for the Inter-User Communication
Vehicle (IUCV) sockets, applications written for the IBM TCP/IP IUCV API can
run over the Unicenter TCPaccess Communications Server product. Supported
applications include those linked with the IBM IUCV-based C socket library.

Unicenter TCPaccess IUCV sockets replace the corresponding IBM TCP/IP IUCV
transport address space and TCP/IP facilities, and let existing applications—
those linked with the IBM C socket library as well as those written using the IBM
macro sockets (EZASMI) or IUCV APIs—execute transparently.

The IUCV sockets are implemented via both a started task (RUNIUCV) that
provides the IUCV transport facilities to user programs, and via a new Unicenter
TCPaccess transport provider.

This IUCV product provides the same interface points as the IBM TCP/IP
product. Therefore, you do not need to make any application changes in order to
use it. However, you must use a Domain Name Server (DNS) to resolve the
name to the IP address, or explicitly use an IP address (in dotted decimal
format), as table lookup is not currently supported.

The IUCV started task must be initialized before any Unicenter TCPaccess task
is initiated and it must remain active while any user or Unicenter TCPaccess
tasks are running on the MVS system. The IUCV task should be started as part of
the system initialization command list (COMMNDxx) and not be shut down
during normal operations.

On startup, the IUCV task defines and activates the VMCF subsystem linkage
and Program Call (PC) services that client programs use.

After the IUCV task has been initialized, Unicenter TCPaccess can be started. As
part of its initialization, Unicenter TCPaccess performs the IUCV transport
handshake and initializes the transport provider interface. No additional
operator commands to Unicenter TCPaccess are necessary to start the IUCV
sockets.

Note: All users of IUCV must be inactive before the subsystem is stopped or
started; otherwise, unpredictable results can occur. Applications using IUCV
have the VMCF subsystem name hard-coded (as VMCF) in most cases. If you
choose to change the name of the VMCF subsystem and not use this default, you
must also change all occurrences of VMCF to the chosen subsystem name.

CAUTION! When the IUCV task is started, it supersedes any existing environment
that was established for the named subsystem. The previous environment is restored
when the IUCV task is stopped.

18–2 Customization Guide

C Socket Replacement Library

C Socket Replacement Library
There is an IUCV interface for C programs. This runtime library provides binary
compatibility for C socket functions. This runtime interface uses the EZASMI
macro interface to call EZASOK03 and connect to Unicenter TCPaccess. C
programs are link edited with the IUCV runtime library and dynamically load
the EZASOK03 module at execution time from the SNSTCP.V520.LINK data set.
Existing C applications, both reentrant and non-reentrant, that wish to use the
Unicenter TCPaccess IUCV interface must be re-link edited and possibly re-
prelinked if reentrant.

TCPaccess 5.2 supports the IUCV interfaces at both the assembler level
(EZASOK03) and at the C level. C applications wishing to call the IUCV socket
calls instead of HPNS socket calls must explicitly include T02UIUCR in the pre-
link step if the application is reentrant or T02UIUCN in the link edit step if the
application is non-reentrant.

C developers should use the HPNS interface instead of the IUCV interface
whenever possible. The HPNS interface does not use IRB exits at the completion
of socket functions. This significantly reduces post function call processing and
increases throughput.

The EBCDICTOASCII and ASCIITOEBCDIC translate tables are provided using
the standard single byte translation tables shipped with Unicenter TCPaccess.
The module ENGLISH has aliases for EBCDICTO and ASCIITOE and as a result
are the default translation table used by the C runtime library. The other single
byte translation tables such as FRENCH, FCANADA, and so forth contain the
EBCDICTO and ASCIITOE entry points allowing the developer to switch the
translate table at link-edit time both specifically including the overriding
translation table in the link-edit step.

Note: Customers who have modified the default translation tables must remove
the usermod, apply this fix, and then reapply the usermod to pick up these
translation table changes.

Inter-User Communications Vehicle (IUCV) Sockets 18–3

IUCV Socket Compatibility

IUCV Socket Compatibility
Support for IUCV sockets in Unicenter TCPaccess allows applications written for
IBM’s TCP/IP API to run over the Unicenter TCPaccess stack.

In addition, support is provided for the following service routines:

■ SNMPGPCN

■ IUCVMULT

■ IUCVMAST

■ IUCVSTRT

■ EZASOK03

These routines are documented in the IBM TCP/IP V3R1 for MVS: Application
Programming Interface Reference, and in IBM APAR PNSG110.

Note: Unicenter TCPaccess IUCV sockets require that you use the IUCVMULT
routine that is included with the product. If you replace this file with another
version, unpredictable results can occur.

Initializing the IUCV Sockets

Once the IUCV the startup procedures are customized, the IUCV sockets can be
initialized to provide IUCV support over Unicenter TCPaccess.

1. Any applications using IUCV must be stopped before starting the IUCV task,
since it dynamically reassigns the VMCF subsystem ID. The pre-existing
VMCF environment is saved and restored at RUNIUCV termination, but no
application notification is performed.

Note: Applications that are left running at startup may encounter a variety
of unpredictable failures, ranging from S0D6 ABENDs to indefinite waits.

2. If possible, bring down the existing IBM TCP/IP address space and IUCV
address space. IBM maintenance APAR PN87700 (available as PTF UN97100
for TCP/IP V3R1 on the MVS 9511 cumulative tape) permits the VMCF
subsystem to be stopped and restarted via operator commands; this fix is
recommended if your site will be testing or using both products alternately.

3. Make sure that the same IJTCFGxx member of the Unicenter TCPaccess
PARM library is in use for both the RUNIUCV task and the Unicenter
TCPaccess task (typically RUNTCP). The VMCFNAME parameter on the
IFSPARM statement must match between IUCV and Unicenter TCPaccess.

Note: By default, applications use a VMCF name of VMCF. Do not alter this
default subsystem name unless instructed to do so.

18–4 Customization Guide

IUCV Socket Compatibility

4. Start the IUCV task (s runiucv).

 Monitor the JES output log for the messages T00IF002I (Address Space
Initialization Complete) and T02IU001I (IUCV Initialization Successfully
Completed). These are interspersed with other messages issued by the task.

5. Start the Unicenter TCPaccess task (s runtcp.tcpip).

 Monitor the JES output log for the T00IF002I (Address Space Initialization
Complete), T01SO001I (Sockets API Initialization Successfully Completed)
and T01IU001I (Connection to IUCV Established). These are interspersed
with other messages issued by the task.

6. Applications that use IUCV sockets can now be started.

Inter-User Communications Vehicle (IUCV) Sockets 18–5

Configuration Information

Configuration Information
For IUCV, you must configure:

■ The TCPIP.DATA data set

■ The IJTCFGxx member of the PARM data set

■ The TCPCFGxx member of the PARM data set

The TCPIP.DATA configuration is discussed here. Refer to the following
chapters for information on these Unicenter TCPaccess data sets “Customizing
Address Space Operations (IJTCFGxx) and “TCP, UDP, RAW and IP Protocol
Configuration (TCPCFGxx).”

Configuring the TCPIP.DATA Data Set

Applications using the IUCV-based C sockets runtime library must either
configure the hlq.TCPIP.DATA (hlq refers to the TSO user ID) data set or insert
the SYSTCPD DD statement into the application. The format of this data set and
definitions of the various parameters contained within are defined in the IBM
manual IBM TCP/IP V3R1 FOR MVS: Customization and Administration Guide,
SC31-7134-01.

Note: The Domain Name Server (DNS) must either be configured with a name
server or you must use an IP address (in dotted decimal format). Name
resolution via table lookup is not currently supported.

The required configuration parameters are:

TCPIPJOBNAME jobname

 jobname specifies the stepname/jobname of the Unicenter TCPaccess task.

The step name (tcpip) given to the Unicenter TCPaccess started task (for
example, runtcp.tcpip) becomes the TCPIPJOBNAME that applications use to
connect to the Unicenter TCPaccess started task via IUCV.

If no stepname is given, the jobname (or task name) is used.

18–6 Customization Guide

Configuration Information

HOSTNAME hostname Provides an override value. GETHOSTNAME returns whatever value was
specified in the TCPIP.DATA HOSTNAME parameter once DECLARE_BUFFER
is issued.

If no DECLARE_BUFFER is issued, GETHOSTNAME returns the default
machine name of the processor. The default machine name is usually the SMF
host name.

The TCPIP.DATA HOSTNAME override is provided so that the DNR hostname
can be returned instead of the SMF hostname.

If the SMF and DNR hostname values are the same, or you want to use the SMF
host name value, omit coding the HOSTNAME parameter.

DOMAINORIGIN origin

origin specifies the site domain origin that is appended to a host name to form
the fully-qualified domain name for a host.
DOMAINORIGIN MYCOMPANY.COM

NSINTERADDR internet_IP_addr

internet_IP_addr specifies the IP address of the Domain Name Server (DNS) host
for the site.

Multiple name servers can be specified.

Default: 14.0.0.0 (not supported for the IUCV sockets).

Optional configuration parameters are:

■ SOCKBULKMODE

■ SOCKDEBUG

■ SOCKDEBUGBULKPERF0

■ SOCKNOTESTSTOR

Any other configuration parameters are ignored.

Inter-User Communications Vehicle (IUCV) Sockets 18–7

Configuration Information

TCPIP.DATA Implemented

Note: Applications that ran using IUCV and depended on settings in T02UIUCV
(IUCVCONS) and which have defined a user.TCPIP.DATA data set now process
the information in user.TCPIP.DATA. This could affect existing job streams.

IUCV applications locate the Unicenter TCPaccess address space by coding the
IDENT= parameter on the EZASMI TYPE=INITAPI macro, or if omitted, by
reading the user.TCPIP.DATA data set and retrieving the Unicenter TCPaccess
address space name from the TCPIPJOBNAME statement within that data set. If
the user profile data set cannot be found or the jobname is not specified within
the data set, the default values from the T02UIUCV constants object module are
used. These default values can be modified via user modifications.

Order of precedence for locating the Unicenter TCPaccess address space:

■ IDENT= parameter on the EZASMI TYPE=INITAPI macro

■ TCPIP.DATA data set

■ Default values from T02UIUCV

All IUCV applications using either the C or assembler-level interfaces also now
process the user.TCPIP.DATA data set. The statements processed are
TCPIPJOBNAME, DNRSSID, VMCFNAME, SOCKDEBUG, TRACENTS and
TRACEDD. The statements DATASETPREFIX, DOMAINORIGIN,
SOCKBULKMODE, SOCKDEBUGBULKPERF0, and SOCKNOTESTSTOR are
validated but otherwise ignored.

18–8 Customization Guide

Configuration Information

The following table describes the IUCVCONS CSECT.

Option Name Offset Value Description

TCPIPJOBNAME 8(x’08’) CL8’ ’ Specifies the one- to eight-
character Job or Started Task
name of the Unicenter TCPaccess
address space.
As delivered, EZASOK03 lets the
application set this value with the
INITAPI call.
If this field is zapped to some
other value, the INITAPI value is
overridden at runtime.

DNRSSID 16(x’10’) CL4’ACSS’ Specifies the four-character
subsystem name used in name
resolution calls.
Default: ACSS
This value is only used if the
application uses the
TYPE=GETHOSTBYADDR or
TYPE=GETHOSTBYNAME
functions.

VMCFNAME 20(x’14’) CL4’VMCF’ Specifies the four-character
subsystem name used in IUCV
calls.
This is not used by HPNS.
Default: VMCF
VMCF subsystem ID; formerly
VMCFSSID

SOCKDEBUG 24(x’18’) X’00’ As delivered, tracing is turned off.
X'80' = TRACING ON

Inter-User Communications Vehicle (IUCV) Sockets 18–9

Configuration Information

Option Name Offset Value Description

TRACENTS 26(x’1A’) H’25’ As delivered, the default trace
table size is limited to 25 entries
before wrapping.
This value is only used if the
TRACEFLAG value is set to ON.

TRACEDD 28(x’1C’) C’SYSPRINT’ As delivered, the default trace DD
statement name is SYSPRINT.
This value is only used if the
TRACEFLAG value is set to ON.
Note: If the OPEN fails for this
DD statement, no tracing will be
attempted.

Neither HPNS nor IUCV implement bulkmode. The IUCV interface syntax
checks and accepts calls turning on bulkmode via SETIBMOPT. The use of
bulkmode with IUCV works exactly like HPNS at the C level. However, the user
of bulkmode at the assembler- level interface is not supported.

Configuring the IJTCFGxx Member

You must edit the IJTCFGxx member of the PARM data set. For more
information about the VMCFNAME and PROMPT parameters, see the chapter
“Customizing Address Space Operations (IJTCFGxx).”

The pool IPTH, defined in the TCPCFGxx member, is used by IUCV sockets.
POOLDEF NAME(IPTH) INITIAL(64) MINIMUM(64) EXPAND(64)

The parameters shown allocate memory for IUCV connection control blocks

IFSPARM Statement

Unicenter TCPaccess no longer requires an external IUCV address space. If
IUCV services are used and a single address space is desired, code
INTERNALIUCV on the IFSPARM statement within the IJTCFGxx parameter
data set member used by Unicenter TCPaccess. NOINTERNALIUCV is the
default. VMCF(xxxx) specifies the VMCF subsystem name that will be used and
as a result, the subsystem blocks for subsystem xxxx will be allocated.

18–10 Customization Guide

Converting from IBM TCP/IP

Converting from IBM TCP/IP
If you are currently running IBM TCP/IP, you must do the following:

1. Shut down IBM TCP/IP.

2. Start up Unicenter TCPaccess IUCV with the default VMCF subsystem entry
(TCPaccess IUCV deactivates IBM VMCF and saves the information used by
it).

3. Start up TCPaccess.

The startup procedures are described in the following sections.

Inter-User Communications Vehicle (IUCV) Sockets 18–11

Converting from API/Link

Converting from API/Link
If you are currently running API/Link, you must do the following:

1. Shut down API/Link.

2. Run the IBMRESET job from the API/Link source library (this job resets the
VMCF subsystem entry).

3. Start up Unicenter TCPaccess IUCV with the default VMCF subsystem entry
(TCPaccess IUCV will de-activate IBM VMCF and save the information used
by it).

4. Start up Unicenter TCPaccess.

The startup procedures are described in the following sections.

Compiling/Linking C Applications Using IUCV
Note: These instructions are valid only for IBM C compiler users. Instructions do
not apply to SAS/C compiler users.
There are some libraries that are recommended and some to avoid when
working with C applications using IUCV. These recommendations are listed
with the sample JCL that is provided for compiling and link editing both IUCV C
programs. A non-reentrant and reentrant version is provided.
In the following sections, hlq stands for the high level qualifier for Unicenter
TCPaccess installed data sets.

Compile and Link a Nonreentrant IUCV Program

Library usage is summarized below:

■ To compile C IUCV applications, use IBM’s Version 3, Release 1
SEZACMAC library for C headers.

■ Do not use Unicenter TCPaccess installed library hlq..H.

■ To link edit nonreentrant C IUCV applications, use member T02UIUCN in
hlq..SEZACMTX.

■ Do NOT use these Unicenter TCPaccess installed libraries to link edit non-
reentrant IUCV applications:

– hlq..CSLIB

– hlq..CILIB

– hlq..LINK.

18–12 Customization Guide

Compiling/Linking C Applications Using IUCV

■ For all link edits, the SYSLIB must include Unicenter TCPaccess installed
library hlq..LOAD for resolving translation tables and routines.

■ At execution time, the user application must have Unicenter TCPaccess
installed library hlq..LINK as a STEPLIB for dynamic loading of EZASOK03
(IUCV).

Sample JCL
//IUCVCLN JOB (0000,000),'IUCV Compile/Link',CLASS=A,MSGCLASS=X,
// MSGLEVEL=(1,1)
//*
//*--*
//* Sample JCL to compile and link a Non-Rent IUCV program *
//*--*
//*
//CL EXEC EDCCL,
// CREGSIZ='4M',
// CPARM='SO,SHOWINC,EXPMAC',
// INFILE='user.lib.source(IUCVpgm1)',
// OUTFILE='user.lib.load(IUCVpgm1),DISP=SHR'
//*
//* Override SYSLIB to include IBM's Ver 3 Rel 1 SEZACMAC
//*
//COMPILE.SYSLIB DD DISP=SHR,DSN=SYS2.TCPIP.V3R1M0.SEZACMAC
// DD DISP=SHR,DSN=CEE.SCEEH.H
// DD DISP=SHR,DSN=CEE.SCEEH.SYS.H
//*
//LKED.SYSLIB DD
// DD DISP=SHR,DSN=hlq..SEZACMTX
// DD DISP=SHR,DSN=hlq..LOAD
//*
//LKED.SYSIN DD *
 INCLUDE SYSLIB(T02UIUCN)
/*

Compile and Link a Reentrant IUCV Program

Library usage is summarized below:

■ To compile C IUCV applications, use IBM’s Version 3, Release 1
SEZACMAC library for C headers.

■ Do NOT use Unicenter TCPaccess installed library hlq..H.

■ To link edit reentrant C IUCV applications, use members T02UIUCR and
H@ERRNO in hlq..SEZARNT1.

■ Do NOT use these libraries to link edit:

– hlq..CSROBJ

– hlq..CIROBJ

– hlq..LINK

Inter-User Communications Vehicle (IUCV) Sockets 18–13

Compiling/Linking C Applications Using IUCV

■ For all link-edits, the SYSLIB must include Unicenter TCPaccess installed
library hlq..LOAD for resolving translation tables and routines.

■ At execution time, the user application must have Unicenter TCPaccess
installed library hlq..LINK as a STEPLIB for dynamic loading of EZASOK03
(IUCV).

Sample JCL
//IUCVCPL JOB (0000,000),'IUCV Compile/Link',CLASS=A,MSGCLASS=X,
// MSGLEVEL=(1,1)
//*
//*---*
//* Sample JCL to compile and link a Reentrant IUCV program *
//*---*
//*
//NOOP EXEC PGM=IEFBR14
//*
//CPLG EXEC EDCCPLG,
// COND.GO=(0,EQ,NOOP), /* DON'T EXECUTE GO STEP */
// CREGSIZ='4M',
// CPARM='RENT,SO,SHOWINC,EXPMAC',
// LPARM='AMODE=31,MAP,XREF,RENT',
// INFILE='user.lib.source(IUCVpgm2)',
// OUTFILE='user.lib.load(IUCVpgm2),DISP=SHR'
//*
//* Override SYSLIB to include IBM's Ver 3 Rel 1 SEZACMAC
//*
//COMPILE.SYSLIB DD DISP=SHR,DSN=SYS2.TCPIP.V3R1M0.SEZACMAC
// DD DISP=SHR,DSN=CEE.SCEEH.H
// DD DISP=SHR,DSN=CEE.SCEEH.SYS.H
//*
//PLKED.SYSLIB DD DISP=SHR,DSN=hlq..SEZARNT1
//*
//PLKED.SYSIN DD *
 INCLUDE SYSLIB(T02UIUCR)
 INCLUDE SYSLIB(H@ERRNO)
/*
//LKED.SYSLIB DD
// DD DISP=SHR,DSN=hlq..LOAD

18–14 Customization Guide

Starting and Stopping IUCV Address Space

Starting and Stopping IUCV Address Space
The IUCV address space executes a single task group, the IJT task group. IUCV
can be started and stopped only by starting or stopping the IUCV address space.
Use the procedure RUNIUCV supplied in the Unicenter TCPaccess CNTL
library.
s runiucv

f runiucv,p clear

runiucv Name of the IUCV address space.

Usage Guidelines

Monitor the JES output log for the messages T00IF002I (Address Space
Initialization Complete) and T02IU001I (IUCV Initialization Successfully
Completed). These are interspersed with other messages issued by the task.

Note: The IUCV address space should not be shut down during normal
operations.

CAUTION! If the IUCV address space is terminated via the FORCE operator
command, the pre-existing VMCF environment (if any) is not restored.

Limitations and Restrictions
The following limitations and restrictions have been identified for the Unicenter
TCPaccess IUCV sockets.

■ For IUCV-based C sockets applications, Domain Name Resolution (DNR)
must be provided by a network Domain Name Server (DNS) configured in
the hlq.TCPIP.DATA statement NSINTGRADDR. Resolution via table
lookup (due to the DNS being unreachable or because
RESOLVE_VIA_LOOKUP was specified at compile time) is not supported.

■ Due to Domain Name Resolution conflicts, the following C socket calls are
not supported:

sethostent() gethostent() endhostent()

setnetent() getnetent() endnetent()

setprotoent() getprotoent() endprotoent()

setservent() getservent() endservent()

Note: These calls return 0 (R15=0) when they fail.

Inter-User Communications Vehicle (IUCV) Sockets 18–15

Additional References

■ Output for the sock_debug() call is different than that returned for IBM
TCP/IP for MVS calls.

■ RPC and XDR calls are not supported with this feature.

■ Bulk mode is not currently supported.

Additional References
For more information about socket programming in the IBM TCP/IP
environment, refer to the following documents.

IBM TCP/IP for MVS: Application Programming Interface Reference, Version 3
Release 1; IBM order number SC31-7187

IBM TCP/IP for MVS: Programmers Reference, Version 3 Release 1; IBM order
number SC31-7135

IBM TCP/IP for MVS: Customization and Administration Guide, Version 3 Release 1;
IBM order number SC31-7134

VM/ESA CP Programming Services for 370, IBM order number SC24-5435

VM/XA CP Programming Services, IBM order number SC23-0370

VM/SP System Facilities for Programming, IBM order number SC24-5288

18–16 Customization Guide

Chapter

19
High Performance Native Sockets
(HPNS)

This chapter provides descriptions of the High Performance Native Sockets
(HPNS) for Unicenter TCPaccess.

This chapter discusses the following topics:

■ IFSPARM Statement—Describes modifications to the IFSPARM Statement
for running HPNS

■ TCPIP.DATA Implemented—Describes the implementation of TCP.DATA

■ Compiling/Linking C Applications Using HPNS—Provides information and
sample JCL for C applications

IBM TCPIP Release 3.2 introduced an interface called HPNS, for High
Performance Native Sockets. The interface is supported in both C and assembler
languages. The interface is functionally similar to the IBM IUCV interface, with
some added extensions. One extension is support for APITYPE=3, which allows
for ECB posting rather than requiring IRB exits for every function call. Another
extension is for support of an unsolicited exit for TPEND.

There are two interfaces for HPNS in the TCPaccess 5.2 release.

■ The HPNS macro level interface for assembler language programs.

Binary compatibility is provided at the EZASOH03 module level, which is
the module called by the expansion of EZASMI macro instructions.
Assembler applications developed using EZASMI dynamically load the
EZASOH03 module from the SNSTCP.V520.LINK data set at execution time.
Existing assembler applications do not have to be relinked to take advantage
of this functionality.

■ The HPNS interface for C programs.

This runtime library provides binary compatibility for C socket functions.
This runtime interface uses the EZASMI macro interface to call EZASOH03
and connect to TCPaccess. C programs are link edited with the HPNS
runtime library and dynamically load the EZASOH03 module at execution
time from the SNSTCP.V520.LINK data set. Existing C applications, both
reentrant and nonreentrant, that wish to use the TCPaccess HPNS interface
must be relink edited and possibly re-prelinked if reentrant.

High Performance Native Sockets (HPNS) 19–1

IFSPARM Statement

In addition to the two HPNS interfaces, TCPaccess 5.2 supports the IUCV
interfaces at both the assembler level (EZASOK03) and at the C level. C
applications wishing to call the IUCV socket calls instead of HPNS socket calls
must explicitly include T02UIUCR in the prelink step if the application is
reentrant, or T02UIUCN in the link edit step if the application is nonreentrant.

C developers should use the HPNS interface instead of the IUCV interface
whenever possible. The HPNS interface does not use IRB exits at the completion
of socket functions. This significantly reduces post function call processing and
increases throughput.

The EBCDICTOASCII and ASCIITOEBCDIC translate tables are provided using
the standard single byte translation tables shipped with Unicenter TCPaccess.
The module ENGLISH has aliases for EBCDICTO and ASCIITOE and as a result
are the default translation table used by the C runtime library. The other single
byte translation tables such as FRENCH, FCANADA, and so on contain the
EBCDICTO and ASCIITOE entry points allowing the developer to switch the
translate table at link-edit time both specifically including the overriding
translation table in the link edit step.

Customers who have modified the default translation tables must:

1. Remove the usermod.

2. Apply this fix.

3. Reapply the usermod to pick up these translation table changes.

IFSPARM Statement
Unicenter TCPaccess does not require an external IUCV address space. If IUCV
services are used and a single address space is desired, code INTERNALIUCV
on the IFSPARM statement within the IJTCFGxx parameter data set member
used by Unicenter TCPaccess.

NOINTERNALIUCV is the default. VMCF(xxxx) specifies the VMCF subsystem
name to use and as a result, the subsystem blocks for subsystem xxxx are
allocated.

19–2 Customization Guide

TCPIP.DATA Implemented

TCPIP.DATA Implemented
Note: Applications that ran using IUCV and depended on settings in T02UIUCV
(IUCVCONS) and that have defined a user.TCPIP.DATA data set now process
the information in user.TCPIP.DATA.

Note: This could affect existing job streams.

HPNS applications do not access the Unicenter TCPaccess address space via the
VMCF subsystem name. HPNS applications locate the Unicenter TCPaccess
address space by coding the IDENT= parameter on the EZASMI TYPE=INITAPI
macro, or if omitted, by reading the user.TCPIP.DATA data set and retrieving the
Unicenter TCPaccess address space name from the TCPIPJOBNAME statement
within that data set. If the user profile data set cannot be found or the jobname is
not specified within the data set, the default values from the T02UIUCV
constants object module are used. These default values can be modified via user
modifications.

Order of precedence for locating the Unicenter TCPaccess address space is:

■ IDENT= parameter on the EZASMI TYPE=INITAPI macro

■ user.TCPIP.DATA data set

■ Default values from T02UIUCV

In addition to HPNS applications using the user.TCPIP.DATA data set, all IUCV
applications using either the C or assembler-level interfaces now process this
data set. The statements processed are TCPIPJOBNAME, DNRSSID,
VMCFNAME, SOCKDEBUG, TRACENTS and TRACEDD. The statements
DATASETPREFIX, DOMAINORIGIN, SOCKBULKMODE,
SOCKDEBUGBULKPERF0, and SOCKNOTESTSTOR are validated but
otherwise ignored.

Option Name Offset Value Description

TCPIPJOBNAME 8(x’08’) CL8’ ’ Specifies the one- to eight-
character Job or Started Task
name of the Unicenter TCPaccess
address space.
As delivered, EZASOK03 lets the
application set this value with the
INITAPI call.
If this field is zapped to some
other value, the INITAPI value is
overridden at runtime.

High Performance Native Sockets (HPNS) 19–3

TCPIP.DATA Implemented

Option Name Offset Value Description

DNRSSID 16(x’10’) CL4’ACSS’ Specifies the four-character
subsystem name used in name
resolution calls.
Default: ACSS
This value is only used if the
application uses the
TYPE=GETHOSTBYADDR or
TYPE=GETHOSTBYNAME
functions.

VMCFNAME 20(x’14’) CL4’VMCF’ Specifies the four-character
subsystem name used in IUCV
calls. This is not used by HPNS.
Default: VMCF
VMCF subsystem ID; formerly
VMCFSSID

SOCKDEBUG 24(x’18’) X’00’ As delivered, tracing is turned off.
X'80' = TRACING ON

TRACENTS 26(x’1A’) H’25’ As delivered, the default trace
table size is limited to 25 entries
before wrapping. This value is
only used if the TRACEFLAG
value is set to ON.

TRACEDD 28(x’1C’) C’SYSPRINT’ As delivered, the default trace DD
statement name is SYSPRINT.
This value is only used if the
TRACEFLAG value is set to ON.
Note: If the OPEN fails for this
DD statement, no tracing will be
attempted.

Neither HPNS nor IUCV implement bulkmode. The HPNS interface syntax
checks and accepts calls turning on bulkmode via SETIBMOPT. The use of
bulkmode with IUCV works exactly like HPNS at the C level. However, the user
of bulkmode at the assembler-level interface is not supported.

19–4 Customization Guide

Compiling/Linking C Applications Using HPNS

HOSTNAME Parameter

The HOSTNAME parameter in the TCPIP.DATA data set provides an override
value. GETHOSTNAME returns whatever value was specified in the
TCPIP.DATA HOSTNAME parameter once DECLARE_BUFFER is issued. If no
DECLARE_BUFFER is issued, GETHOSTNAME returns the default machine
name of the processor. The default machine name is usually the SMF host name.
The TCPIP.DATA HOSTNAME override is provided so that the DNR hostname
can be returned instead of the SMF hostname. If the SMF and DNR hostname
values are the same, or you want to use the SMF host name value, omit coding
the HOSTNAME parameter.

Compiling/Linking C Applications Using HPNS
Note: These instructions are valid only for IBM C compiler users. Instructions do
not apply to SAS/C compiler users.

There are some libraries that are recommended and some to avoid when
working with C applications using HPNS. These recommendations are listed
with the sample JCL that is provided for compiling and link editing HPNS C
programs. Both a nonreentrant and a reentrant version are provided.

In the following sections, hlq stands for the high level qualifier for Unicenter
TCPaccess installed data sets.

Compile and Link a Nonreentrant HPNS Program

Library usage is summarized below:

■ To compile C HPNS applications, use IBM’s Version 3, Release 2 (or later)
SEZACMAC library for C headers.

■ Do not use Unicenter TCPaccess installed library hlq..H.

■ To link edit nonreentrant C HPNS applications, use member T02UHPNN in
hlq..SEZACMTX.

■ Do not use these libraries to link edit nonreentrant C HPNS applications:

– hlq..CSLIB

– hlq..CILIB

– hlq..LINK.

■ For all link-edits, the SYSLIB must include hlq..LOAD for resolving
translation tables and routines. At execution time, the user application must
have hlq..LINK as a STEPLIB for dynamic loading of EZASOH03 (HPNS).

High Performance Native Sockets (HPNS) 19–5

Compiling/Linking C Applications Using HPNS

Sample JCL
//HPNSCLN JOB (0000,000),'HPNS Compile/Link',CLASS=A,MSGCLASS=X,
// MSGLEVEL=(1,1)
//*
//*--*
//* Sample JCL to compile and link a Non-Rent HPNS program *
//*--*
//*
//CL EXEC EDCCL,
// CREGSIZ='4M',
// CPARM='SO,SHOWINC,EXPMAC',
// INFILE='user.lib.source(HPNSpgm1)',
// OUTFILE='user.lib.load(HPNSpgm1),DISP=SHR'
//*
//* Override SYSLIB to include IBM's SEZACMAC V3 R2 or later
//*
//COMPILE.SYSLIB DD DISP=SHR,DSN=TCPIP.SEZACMAC
// DD DISP=SHR,DSN=CEE.SCEEH.H
// DD DISP=SHR,DSN=CEE.SCEEH.SYS.H
//*
//LKED.SYSLIB DD
// DD DISP=SHR,DSN=hlq..SEZACMTX
// DD DISP=SHR,DSN=hlq..LOAD
//*
//LKED.SYSIN DD *
 INCLUDE SYSLIB(T02UHPNN)
/*

Compile and Link a Reentrant HPNS Program

Library usage is summarized below:

■ To compile C HPNS applications, use IBM’s Version 3, Release 2 (or later)
SEZACMAC library for C headers.

■ Do not use Unicenter TCPaccess installed library hlq..H

■ To link edit reentrant C HPNS applications, use members T02UHPNR and
H@ERRNO in hlq..SEZARNT1.

■ Do not use these libraries to link edit reentrant C HPNS applications:

– hlq..CSROBJ

– hlq..CIROBJ

– hlq..LINK.

■ For all link-edits, the SYSLIB must include hlq..LOAD for resolving
translation tables and routines. At execution time, the user application must
have hlq..LINK as a STEPLIB for dynamic loading of EZASOH03 (HPNS).

19–6 Customization Guide

Compiling/Linking C Applications Using HPNS

Sample JCL
//HPNSCPL JOB (0000,000),'HPNS Compile/Link',CLASS=A,MSGCLASS=X,
// MSGLEVEL=(1,1)
//*
//*---*
//* Sample JCL to compile and link a Reentrant HPNS program *
//*---*
//*
//NOOP EXEC PGM=IEFBR14
//*
//CPLG EXEC EDCCPLG,
// COND.GO=(0,EQ,NOOP), /* DON'T EXECUTE GO STEP */
// CREGSIZ='4M',
// CPARM='RENT,SO,SHOWINC,EXPMAC',
// LPARM='AMODE=31,MAP,XREF,RENT',
// INFILE='user.lib.source(HPNSpgm2)',
// OUTFILE='user.lib.load(HPNSpgm2),DISP=SHR'
//*
//* Override SYSLIB to include IBM's SEZACMAC V3 R2 or later
//*
//COMPILE.SYSLIB DD DISP=SHR,DSN=TCPIP.SEZACMAC
// DD DISP=SHR,DSN=CEE.SCEEH.H
// DD DISP=SHR,DSN=CEE.SCEEH.SYS.H
//*
//PLKED.SYSLIB DD DISP=SHR,DSN=hlq..SEZARNT1
//*
//PLKED.SYSIN2 DD *
 INCLUDE SYSLIB(T02UHPNR)
 INCLUDE SYSLIB(H@ERRNO)
/*
//LKED.SYSLIB DD
// DD DISP=SHR,DSN=hlq..LOAD

High Performance Native Sockets (HPNS) 19–7

Chapter

20
Defining Control Block Pools
(POOLDEF Statement)

This chapter describes the POOLDEF statement, which allows you to define
pools of control blocks for Unicenter TCPaccess.

It discusses the following topics:

■ Defining Control Block Pools—Describes the usage of the POOLDEF
statement

■ Configuration Members—Describes the configuration members where the
POOLDEF statement can be used

■ POOLDEF Statement Syntax—Describes the syntax for the POOLDEF
command

■ Pool Types—Describes the pools available for Unicenter TCPaccess

Defining Control Block Pools
The POOLDEF statement allows you to define pools of control blocks necessary
to run the API and put limits on API usage. Because the API is used internally by
the domain name resolver, it must be set up properly for Unicenter TCPaccess to
run. The pool definitions specify an initial amount, an expansion amount, and a
minimum amount to limit contraction. You can adjust these numbers to
minimize expansion and contraction and improve efficiency. For more
information, refer to Pool Types.

Tip: It is recommended that you use the defaults at first, and issue the POOL
command periodically to display pool usage. If you find pools are being
expanded and staying at the higher value, override the default and specify a
higher minimum value.

Defining Control Block Pools (POOLDEF Statement) 20–1

Configuration Members

Configuration Members
The POOLDEF statement can be coded in several configuration members,
depending on which pools you want to define. DNRCFGxx, IJTCFGxx,
TCPCFGxx, RTMCFGxx and SNMCFGxx all may contain the POOLDEF
statement. Statement syntax remains the same, although the pool names must be
specified according to the configuration. The tables listed in Pool Types specify
the configuration members where the pool names are valid.

POOLDEF Statement Syntax
POOLDEF NAME (name)

 INITIAL (value)
 MINIMUM (value)
 EXPAND (value)
 CONTRACT (value)
 FENCED

NAME (name) One POOLDEF command must be entered for each of the pools listed in the table
contained in DNRCFGxx Control Block Pool.

Default: None (Parameter is required).

 INITIAL (value) Specifies the initial number of pool elements to obtain for the pool.

 Default: None (Parameter is required).

MINIMUM (value) Specifies the minimum number of pool elements to leave in the pool if pool
contraction is performed.

 Default: None (Parameter is required).

EXPAND (value) Specifies the number of pool elements to obtain when and if the pool must be
expanded.

 Default: None (Parameter is required).

CONTRACT (value) Specifies the number of pool elements to free when and if the pool must be
contracted.

Default: None (Parameter is required).

20–2 Customization Guide

Pool Types

FENCED Specifies that pool element fencing should be enabled for the elements of this
storage pool.

Note: This is intended as an aid in diagnosing storage pool overlays and should
only be specified at the request of product support.

Default: Pool element fencing is disabled.

Pool Types
These tables list the pool names with their initial, minimum, expand, and
contract values. The tables are displayed according to the configuration member
where they can be defined.

DNRCFGxx Control Block Pool

There is only one pool for DNRCFGxx. The DSRB pool has no default; values for
the DSRB pool must be given explicitly.

Pool Description Initial Minimum Expand Contract

DSRB Domain Name
Resolution Request
Block.

Defining Control Block Pools (POOLDEF Statement) 20–3

Pool Types

IJTCFGxx Control Block Pools

This table lists the control block pools that can be defined in IJTCFGxx.

Important! You should consult with Technical Support before changing the values of
these pools.

Pool Description Initial Minimum Expand Contract

MWA Module Work Area 100 200 50 75

SRB IFS Service Request
Block

100 200 50 0

FRR IFS Recovery Element 100 200 50 0

XWA Cross Memory Workarea 112 160 24 0

QCB Queue Control Element
for pools.

100 200 50 0

STAK Module Stack Block for
workareas (see note
below)

40 20 20 0

MSRB Message Service Request
Block

200 400 100 0

Note: The STAK storage pool is unique in that the POOLDEF statement INITIAL
parameter is the only parameter honored by Unicenter TCPaccess for this storage
pool. When and if it is necessary to expand the STAK storage pool, it is always
expanded one element at a time. In addition, the STAK storage pool is never
contracted so the MINIMUM and CONTRACT parameters are meaningless for
this storage pool.

In the statistics displayed by the POOL command for the STAK storage pool, the
column titled #EXP has a different meaning than it does for the other storage
pools. For the STAK storage pool, the value displayed represents the number of
times that a single unit of work required a seconday stack extent. This is used
internally to tune the length of the storage pool elements.

20–4 Customization Guide

Pool Types

TCPCFGxx Control Block Pools

This table lists the control block pools that can be defined in TCPCFGxx.

Pool Description Initial Minimum Expand Contract

ATCB Address space task block 32 32 16 32

SEPM Socket endpoint 16 256 32 128

SPCB Transport Provider (only
three required total)

3 3 1 1

SAW Socket API function 64 512 32 256

IPTH IUCV only, path to TCP 64 64 32 64

MB1 Buffer pool for moving data
(128 bytes)

32 128 16 128

MB2 Buffer pool for moving data
(256 bytes)

32 256 16 256

MB3 Buffer pool for moving data
(512 bytes)

32 192 16 128

MB4 Buffer pool for moving data
(1024 bytes)

32 160 16 128

MB5 Buffer pool for moving data
(2048 bytes)

16 128 8 64

MB6 Buffer pool for moving data
(4096 bytes)

16 96 4 32

MB7 Buffer pool for moving data
(8192 bytes)

8 48 8 16

MB8 Buffer pool for moving data
(16384 bytes)

4 32 4 16

MB9 Buffer pool for moving data
(32768 bytes)

4 16 4 16

MBA Buffer pool for moving data
(65536 bytes)

2 8 2 8

Defining Control Block Pools (POOLDEF Statement) 20–5

Pool Types

SNMCFGxx Control Block Pools

This table lists the control block pools that you can define for SNMCFGxx.

Note: The SNMP and XAE pools have no defaults. Their values must be
explicitly specified.

Pool Description Initial Minimum Expand Contract

XAE SNMP Request/Response
header.

SNMP SNMP data.

RTMCFGxx Control Block Pools

This table lists the control blocks that you can define for RTMCFGxx.

Pool Description Initial Minimum Expand Contract

RTPB TelnetRTM port block 4 8 4 4

RTOB TelnetRTM owner block 32 256 64 128

20–6 Customization Guide

Chapter

21 Translation Tables

This chapter describes the translation tables available for Unicenter TCPaccess
Telnet Server. It includes these sections:

■ Unicenter TCPaccess Telnet Server Character Translation—Describes the
character translation facilities of TCPaccess

■ Choosing a TELNET Translation Table—Details factors to consider when
selecting a Telnet translation table

■ National-Use Characters—Describes the National-Use characters

■ Modifying or Adding Translate Tables—Describes how to add new translate
table or edit the existing tables

■ Structure of Translate Table Modules—Details information about the
structure of translate tables provided with TCPaccess

■ Generating Prefixes for National Language Translate —Describes the use of
the XLTBL macro

Unicenter TCPaccess Telnet Server Character Translation
Unicenter TCPaccess Telnet Server character translation for both the data
connection and the Telnet connection.

Telnet connections are made for these services:

■ Telnet

■ SMTP

■ LPR

■ FTP (generally called the control connection).

FTP also makes a data connection when files are transferred. During translation,
ASCII-encoded data on the TCP/IP network is converted to EBCDIC-encoded
data on the MVS system, and conversely. Translation tables for several
languages are distributed with Unicenter TCPaccess Telnet Server in both source
and load format. You can specify any of the tables provided, modify them, or
define and use your own translation tables.

Translation Tables 21–1

Unicenter TCPaccess Telnet Server Character Translation

The Telnet connection for an application uses the translate table specified by the
TRANTBL parameter on the appropriate APPCFGxx configuration statement;
the data connection uses the translate table specified by the CHARSET
parameter. If these parameters are not coded in the configuration table, the
ENGLISH translate table is the default.

Data connection translation can be done with both single- and double-byte
translate tables. Telnet connection translation requires single-byte tables. The
single-byte character set translate tables distributed with the product are
ENGLISH (the default), DANISH, FCANADA, FRENCH, GERMAN, GSWISS,
ITALIAN, KANJI83, KOREAN, JAPANES, SJIS83, SPANISH, SWEDISH, SW850
SW88591 and THAI. Distributed double-byte tables are HANGUL and KANJI.
The source code for these tables is located in the SAMP data set and their load
module forms are in the LOAD data set.

Translate Table Specification

The TRANTBL parameter can be specified on the following APPCFGxx
statements: TELNET, APPL, FTP, SMTP and LPR. CHARSET can be specified on
the FTP statement. Read the specific application chapter for more information
about each of these statements and how the table name should be specified.

Character Table Usage Notes

Consider these notes when specifying translate tables:

■ Telnet translation has no impact on 3270-based Telnet connections because
they use binary mode.

■ If no TRANTBL or CHARSET information is provided, the ENGLISH table is
used for all translation.

■ If TRANTBL is specified on the GLOBAL statement only, the table named is
used for all other Telnet services.

■ If TRANTBL is specified for a service (for example, SMTP), the table named
will be used for that service.

■ TRANTBL on the TELNET statement becomes the default for all line mode
APPL statements, unless it is specified on individual APPL statements.

■ If TRANTBL is specified on an APPL statement, the table named will be
used for that application.

■ Regardless of TRANTBL settings, if CHARSET is not specified on the FTP
statement, data translation defaults to ENGLISH.

■ CHARSET can be overridden for individual FTP sessions by specifying it in
SITE parameters. Refer to the Unicenter TCPaccess Telnet Server User Guide.

21–2 Customization Guide

Choosing a Telnet Translation Table

Choosing a Telnet Translation Table
Because of translation differences between languages, when using a table other
than English for Telnet translation, you should first do the following:

1. Determine if any of the characters indicated in the following table will
appear in your telnet input or output stream.

2. If there are any, check the translate table source to verify they will translate
correctly.

The SMTP service uses the @ character as part of the mailing address. In the
Danish table however, an EBCDIC X’7C’ does not represent an @. Rather, in that
table an ASCII X’40’ is translated to an EBCDIC X’40’ (which is a blank), and an
EBCDIC X’7C’ is translated to an ASCII X’5C’. Therefore, the Danish table cannot
be used for SMTP.

National-Use Characters
The following table indicates the 14 national-use characters.

■ The first row is the EBCDIC character representation for English

■ The second row is the EBCDIC hexadecimal equivalent

■ The third row is the seven-bit ASCII hexadecimal equivalent

Note: The translation of these characters may vary from language to language.

CHAR ¢ ! � ‘ $ # @ ¬ ~ { } \ | “

HEX(E) 4A 5A 6A 79 5B 7B 7C 5F A1 C0 D0 E0 4F 7F

HEX(A) no
symbol

21 7C 60 24 23 40 5E 7E 7B 7D 5C ns 22

This information was taken from a table in the IBM 3270 Information Display
System Character Set Reference, GA27-2837.

Translation Tables 21–3

Modifying or Adding Translate Tables

Modifying or Adding Translate Tables
If necessary, you can modify the translate tables to suit customer requirements.
In addition, other translate tables with similar structure can be added.

Tip: It is recommended that new tables be developed using an existing table
as a model.

Structure of Translate Table Modules
A translate table module has a special structure containing a set of translate
tables as described below. The national language translate table modules used by
the Telnet and Telnet-based applications must have this structure:
Prefix - XLTBL TYPE=START

Set of translate tables
Suffix - XLTBL TYPE=FINISH

For Telnet purposes, there should be four translate tables in the set.

■ An ATOE table for ASCII-to-EBCDIC translation

■ ETOA for EBCDIC-to-ASCII translation

■ AUPC for ASCII lower case to upper case folding

■ EUPC for EBCDIC lower case to upper case folding

Each individual table is 256 bytes long and suitable for use with the IBM
System/370 TR instruction. Additionally, the statement labels for these tables
must be listed in the XLTBL macro TABLE parameter in the order listed above.

Data translation requires only the first two tables (ATOE and ETOA), as there are
no case changes involved in the transfer. Various command line entries require
all four translate tables in the set.

21–4 Customization Guide

Generating Prefixes for National Language Translate Tables

Generating Prefixes for National Language Translate Tables
The XLTBL macro generates the prefix and suffix needed by a national language
translate table module.

XLTBL Macro Syntax

The syntax for the XLTBL macro is as follows:
[name] XLTBL [TYPE = (START | FINISH)]

[, KIND = (CHAR | NUMBS | DBCS)]
[, TABLE = label_name, ., ., .]
[, FLAG = (REFLEX | ASCII8 | ASCI16 | NOSOSI | BKTSUB)]
[, TITLE = 'char_string']
[, TAG = character]
[, ID = character (s)]
[, DSECT = (YES | NO)]

TYPE = (START | FINISH)

Specifies whether header or trailer data should be generated.

START generates the translate module prefix, FINISH its suffix.

Default: START.

KIND = (CHAR | NUMS | DBCS)

This keyword defines the translation set you are defining:

■ CHAR: single byte, four-table set

■ NUMS: single byte, two-table set

Default: CHAR.

TABLE = (label_name, label2, label3, ...)

 List of addresses for individual translate tables (label1, label2, ...)] contained in the
translate table module.

label1 The statement label for the first translate table

label2 The second, and so forth

The number of items depends upon KIND.

For Telnet translate tables, KIND=CHAR should be coded, and TABLE should
list four labels for ATOE, ETOA, AUPC, and EUPC translate tables, in that order.

Default: None.

Translation Tables 21–5

Generating Prefixes for National Language Translate Tables

FLAG = (REFLEX | ASCII8 | ASCI16)

List of options to set in the flag area of the fixed header:

REFLEX ASCII to EBCDIC and EBCDIC to ASCII is symmetric.

ASCII8 ASCII data is eight bit (SBCS)

ASCI16 ASCII data is 16 bit

Default: None.

TITLE = 'char_string' Specifies a character string used to describe the translation set. Length is limited
to 30 characters.

 The default is ‘name Translation’, where name is the label on the XLTBL
invocation statement.

TAG = character One-byte character identifier used to group the soft key definitions.

 Default: $

ID = character(s) Three-byte character identifier used as a root for macro generated label names.

Note: Only change this identifier if the XLTBL macro is issued multiple times in
the same TYPE.

Default: XS@

DSECT = YES | NO

YES Generates a DSECT map of the data area.

NO Generates a CSECT map of the data area.

Note: When you create your own translation tables, the DSECT parameter
should always be set to NO. Although the default value of YES is used by
Unicenter TCPaccess Telnet Server for internal applications, if YES is selected
when you create a translation table, the translation table will be invalid.

When YES is specified the keywords TITLE, FLAG, and TABLE are ignored, so
this parameter should always be set to NO.

Default: YES.

21–6 Customization Guide

Generating Prefixes for National Language Translate Tables

XLTBL Macro Example
ENGLISH XLTBL TYPE=START,
KIND=CHAR,
TABLE=(ATOE,ETOA,AUPE,EUPA),
FLAG=(ASCII8),
TITLE='English Single byte table',
DSECT=NO

Maintaining Translation Tables Using UMODTRAN

The SMP/E usermod JCL stream UMODTRAN in the CNTL library provides for
translation table maintenance. It is used for both modifying and adding tables. It
compiles and links the table source into a load module in the LOAD library.
Unicenter TCPaccess Telnet Server uses only the load module version when it
does translation.

SMP/E maintains all translate table source in the SAMP library. For existing
tables, make changes in the SAMP member before executing UMODTRAN.
Build new translate tables in a different library, as UMODTRAN copies them
into the SAMP library as part of its SMP/E processing. Once the table is copied,
all subsequent changes should be made in the SAMP library.

Note:
1. You should run an SMP/E APPLY CHECK against any USERMOD that you

are trying to install, as there may be additional PREs on your system that are
not accounted for.

2. Once you gather this information, add the SYSMOD list(s) to the
++PRE(xxxxxx) statement.

3. SMP/E REJECT the USERMOD to remove the invalid entry from the SMP/E
CSI.

4. You can now RECEIVE/APPLY the USERMOD with success.

Directions for using UMODTRAN are located within the member. When needed,
make a copy of the UMODTRAN provided and adapt it to your environment.

Translation Tables 21–7

Generating Prefixes for National Language Translate Tables

Sample JCL for UMODTRAN is shown below:
//UMODTRAN JOB
//*
//* SAMPLE JCL STREAM TO ADD OR MODIFY TRANSLATE TABLES
//*
//*
//* **
//* * *** INSTRUCTIONS *** *
//* ***
//* *
//* * TO ADD OR MODIFY A TRANSLATE TABLE, DO THE FOLLOWING:
//* *
//* * 1. MAKE THE FOLLOWING GLOBAL CHANGES TO THIS JCL STREAM
//* *
//* * . CHANGE 'UMODNAM' TO A UNIQUE 7 CHARACTER USERMOD NAME
//* * (IF THIS IS NOT THE FIRST UPDATE TO THE TABLE YOU WILL
//* * NEED TO ADD A PRE PARAMETER TO THE ++VER STATEMENT
//* * NAMING THE LAST USERMOD THAT WAS APPLIED.)
//* * . CHANGE 'TABNAME' TO THE TRANSLATE TABLE NAME.
//* * . CHANGE 'SMPINDX' TO THE SMP HIGH LEVEL QUALIFIER NAME.
//* * . CHANGE 'XXX' TO THE APPROPRIATE RELEASE NUMBER.*
//* * . CHANGE 'HOLDCL' TO YOUR SYSOUT HOLD CLASS.
//* *
//* * DO 2.A -OR- 2.B
//* *
//* * 2.A FOR UPDATING AN EXISTING TABLE:
//* *
//* * . VERIFY TABLE UPDATES WERE MADE IN THE SAMP LIBRARY
//* * MEMBER PRIOR TO RUNNING THIS JOB.
//* *
//* * 2.B FOR ADDING A NEW TABLE:
//* *
//* * . POINT THE TEXTLIB DD STATEMENT TO THE LIBRARY
//* * CONTAINING THE NEW TABLE SOURCE.
//* *
//* * . UNCOMMENT THE SYSLIB PARAMETER IN THE ++SRC
//* * STATEMENT. (USERMOD WILL COPY TABLE TO SAMP LIBRARY)
//* *
//* * 3. VERIFY THE JOB STATEMENT IS CORRECT AND SUBMIT THE JOB.
//*
//**
//*
//*
//SMPE EXEC PGM=GIMSMP,REGION=4096K,TIME=960,
// PARM='CSI=SMPINDX.CSI,PROCESS=WAIT'
//SMPHOLD DD DUMMY
//SMPLOG DD DSN=SMPINDX.SMPLOG,DISP=MOD
//SMPOUT DD SYSOUT=HOLDCL
//TEXTLIB DD DSN=SMPINDX.SAMP,DISP=SHR
//SMPPTFIN DD *
++ USERMOD (UMODNAM) .
++ VER (Z038) FMID(T0XXXX).
++JCLIN .
//JCLINASM JOB (COMPANY),'TRANSLATE',MSGCLASS=X
//ASM EXEC PGM=ASMBLR,
// REGION=512K,
// PARM='OBJ,NODECK,LIST,NORENT'
//*
//SYSIN DD DSN=IOS390.ATCPSAMP(TABNAME),
// DISP=(SHR,KEEP,KEEP)
//*

21–8 Customization Guide

Generating Prefixes for National Language Translate Tables

//SYSGO DD DSN=&&PUNCH (TABNAME),
// UNIT=3380,
// SPACE=(80,(200,50)),
// DISP=(MOD,PASS)
//JCLINLNK JOB (COMPANY),'UMOD XLATE',MSGCLASS=X
//LKED EXEC PGM=IEWL,PARM='REUS,OL,LIST,NCAL',REGION=512K
//SYSLMOD DD DSN=IOS390.TCPLOAD,DISP=SHR
//ATCPLOAD DD DSN=IOS390.ATCPLOAD,DISP=SHR
//SYSLIN DD *
INCLUDE ATCPLOAD (TABNAME)
MODE AMODE (31),RMODE (ANY)
ENTRY $TABNAME
NAME TABNAME (R)
//*
++SRC (TABNAME) TXLIB (TEXTLIB)
DISTMOD (ATCPLOAD)
/* SYSLIB(TCPSAMP) */
DISTLIB (ATCPSAMP) .
//SMPCNTL DD *
SET BDY (GLOBAL) .
RECEIVE S (UMODNAM) .
SET BDY (TCPTZN) .
APPLY S (UMODNAM) .
/*

Translation Tables 21–9

Chapter

22 Bind Security

This chapter provides guidelines to help you customize your use of bind
security. This chapter includes these sections:

Configuring Bind Security—Describes how to tailor bind security for your site

BINDSEC Statement—Describes the parameters for the BINDSEC statement

PORTRULE Statement—Describes the parameters for the PORTRULE statement

IPRULE Statement—Describes the parameters for the IPRULE statement

Configuring Bind Security
Bind security allows an installation to restrict access to local ports, assign certain
attributes to local ports, and to prevent unauthorized applications from binding
to a network interface. It is configured using PORTRULE and IPRULE
statements in a member of the SYSPARM data set. The name of the member
containing the PORTRULE and IPRULE statements is specified using the
BINDSEC statement of the TCPCFGxx configuration member.

The bind security configuration parameters may be refreshed while TCPaccess is
active. For additional information, refer to the description of the REFRESH
command in the System Management Guide.

Bind Security 22–1

Configuring Bind Security

BINDSEC Statement

The BINDSEC statement of the TCPCFGxx configuration member of the
SYSPARM data set specifies the name of another member of the SYSPARM data
set containing bind security configuration parameters.
BINDSEC CNFG(member_name)

CNFG (member_name) Specifies the name of the member of the SYSPARM

configuration data set containing bind security
configuration parameters.

PORTRULE Statement

Allows an installation to restrict access to local ports and to assign certain
attributes to local ports.

The same port number may be specified in more than one PORTRULE
statements. The order of the PORTRULE statements determine which rule is
applied. The first rule with matching port number, protocol, and job name is
applied. Consequently, the statements should be specified with the most
restrictive PORTRULE statements first, followed by increasingly less restrictive
rules.

Using the PORTRULE statement, an installation may dynamically bind a
network interface to an application when the application calls the bind() socket
API function with the internet address specified as INADDR_ANY. The network
interface may be a real or virtual interface. This feature is especially useful for
network applications that require unique internet addresses but cannot be
configured to call the bind() socket API function with a specific internet address.

The PORTRULE statement may be used to automatically register a network
application with the MVS Workload Manager when the application binds to a
port.

Any number of PORTRULE statements may be specified. Any port number for
which there is no corresponding PORTRULE may be used by any network
application.

22–2 Customization Guide

Configuring Bind Security

PORTRULE Statement Syntax
PORTRULE NUMBER(n1 [:m1] [n2 [:m2]] . . .)
 PROTOCOL(TCP | UDP)
 [JOBNAME(jn1 [jn2] . . .)]
 [ACCESS(NOSHR | SHR | RESTRICT)]
 [BIND(ipaddr)]
 [SAF(resname)]
 [WLM(location [network [LUname]])]

NUMBER(n1 [:m1] [n2 [:m2]]
. . .)

Specifies one or more port numbers to which port rule is applied. The
specification may be a single port number, a list of port numbers, a
range of port numbers, or a combination of these forms. The port
numbers must be specified as a numeric quantity in the range 1 - 65535.

PROTOCOL(TCP | UDP) Specifies the protocol to which that the port rule is applied. The
specification must be TCP or UDP.

[JOBNAME(jn1 [jn2] . . .)] Specifies the list of MVS job names that are authorized to bind to the
port. The MVS job name will be the job name for an initiated JOB,
started task name for a started task, or TSO userid for a TSO user. The
values specified must be from one- to eight-bytes in length and may
include wild card characters with the character '%' denoting a single
mask character and the character '*' denoting zero or more mask
characters. The default, if not specified, is all job names.

[ACCESS(NOSHR | SHR |
RESTRICT)]

Specifies the access to the port allowed by multiple network
applications attempting to listen on the same port. The value specified
must be one of the following:

NOSHR Multiple network applications are not allowed to bind to the
port. This option is valid for network applications using
TCP or UDP protocols.

SHR Multiple authorized network applications may listen on the
port. When this option is specified, TCPaccess will allow
multiple listeners to listen on the same combination of port
and interface. As incoming TCP connections (SYN packets)
arrive for the port and interface, TCPaccess will distribute
them across the listeners. This option is only valid for
network applications using the TCP protocol.

RESTRICT The port is reserved and no network application may bind
to the port. This option is valid for network applications
using TCP or UDP protocols.

Default: ACCESS(NOSHR).

Bind Security 22–3

Configuring Bind Security

[BIND(ipaddr)]

Specifies a network interface address to bind the network application to
when the application calls the bind() socket API function with the
internet address specified as INADDR_ANY. The interface address
must be specified in dotted decimal notation, and may be a real or
virtual interface addresses. If the interface address is an application
dynamic VIPA, the interface will be dynamically activated during
bind() processing. If the interface address requires authorization (see the
IPRULE statement), the network application must be authorized to bind
to the address.
This keyword is valid for network applications using TCP or UDP
protocols.

[SAF(resname)] Specifies that the port is reserved for network applications that are
permitted to the SAF SERVAUTH class entity named as follows:
EZB.PORTACCESS.sysname.tcpname.resname
where EZB.PORTACCESS is a constant, sysname is the value of the MVS
&SYSNAME system symbol, tcpname is the Unicenter TCPaccess started
task or job name, and resname is the one- to eight-character value
specified.
This keyword is valid for network applications using TCP or UDP
protocols.

[WLM(location [network
[LUname]])]

Specifies that the network application is to be registered with the MVS
Workload Manager and associates the application with a triplet,
corresponding to location name, network ID and LU name. This triplet
is expected to be unique across all registered applications in the sysplex,
and in fact should be unique across all networks. TCPaccess associates
an eight-byte host name with the application consisting of the four-byte
MVS SMF system identifier concatenated with the four-byte TCPaccess
subsystem identifier.
This keyword requires from one to three subparameters, as follows:
location Specifies the 1 to 18 character location associated with the

network application.
network Specifies the one- to eight-character network ID associated

with the network application. The default, if not specified, is
the value of the MVS &SYSNAME system symbol.

Luname Specifies the one- to eight-character logical unit name
associated with the network application. The default, if not
specified, is the job name, started task name, or TSO userid
assigned to the network application.

This keyword is valid for network applications using TCP or UDP
protocols.

22–4 Customization Guide

Configuring Bind Security

 For background information on how this keyword may be used, refer to
the description of the service named IWMSRSRG in the IBM publication
titled MVS Programming: Workload Management Services.

IPRULE Statement

Allows an installation to prevent an unauthorized application from binding to a
network interface.

Any number of IPRULE statements may be specified. Any network interface for
which there is no corresponding IPRULE may be used by any network
application.
IPRULE IPADDRESS(n1 [:m1] [n2 [:m2]] . . .)
 [JOBNAME(jn1 [jn2] . . .)]
 [ACCESS(RESTRICT)]

IPADDRESS(n1 [:m1]
[n2 [:m2]] . . .)

Specifies the network interface addresses requiring authorization. The
specification may be a single interface address, a list of interface addresses, a
range of interface addresses, or a combination of these forms. The interface
addresses must be specified in dotted decimal notation, and may be a real or
virtual interface addresses.

[JOBNAME
(jn1 [jn2] . . .)]

Specifies the list of MVS job names that are authorized to bind to the network
interfaces. The MVS job name will be the job name for an initiated JOB, started
task name for a started task, or TSO userid for a TSO user. The values specified
must be from one- to eight-bytes in length and may include wild card characters
with the character '%' denoting a single mask character and the character '*'
denoting zero or more mask characters. The default, if not specified, is all job
names.

[ACCESS(RESTRICT)
]

Specifies that the network interfaces are not available to any network application.
The default, if not specified, is to allow any authorized network application to
bind to the network interfaces.

Bind Security 22–5

Appendix

A SSL Considerations

The TCPaccess Telnet Server provides the ability to protect Telnet connections
using the SSL (Secure Socket Layer) protocol. SSL connections are defined at
Unicenter TCPaccess start up in configuration member ACPCFGxx. However, for
SSL to work properly, digital certificates (DC) and public/private key mechanisms
(referred to as PKI in IBM publications) must be defined. An X.509 certificate
contains the needed public key information within itself.

Digital certificates can either be self-signed or provided by a Certificate
Authority (CA).

SAF Considerations for Certificates
Certificates are created and maintained in server-defined repositories called key
databases (KDB). Security packages can also maintain certificates. For RACF,
certificates are grouped into into keyrings, that is, a keyring is defined and
certificates are connected to the specified keyring. Each certificate is given a label
which is a character string that identifies the certificate. A certificate can be
designated, by its label, as the default certificate for the database or keyring.

Unicenter TCPaccess Communications Server supports KDBs residing in an HFS
file and KDBs that are defined to and managed by SAF (RACF, eTrust CA-ACF2
or eTrust CA-TopSecret).

For HFS files, the KDBs are created and managed by the OMVS service called
gskkyman. Refer to OS/390 System SSL Programming Guide and Reference for
details on gskkyman usage.

Note: When defining an HFS KDB, you must (to work with the Server) also
define its companion stash file. HFS KDBs and stash files, by convention, have
extensions of kbd and sth respectively. The two pathnames are what are defined
to the SSL Server.

SSL Considerations A–1

SAF Considerations for Certificates

For SAF, information regarding the KDBs can be found in the following manuals:

■ OS/390 SecureWay Security Server RACF Command Language

■ eTrust CA-ACF2 Administrator Guide

■ eTrust CA-TopSecret Command Functions Guide

For SAF, the keyring name is defined to the SSL Server.

The names you select for your KDBs (whether they’re SAF keyring names or HFS
paths), are specified on KEYRING definition statements in APPCFGxx.

Note: The label (specific certificate) is not specified on the KEYRING statement;
the default label (certificate) is used.

The client software needs to verify a certificate presented to it during the initial
handshake. Client software may maintain databases for certificates. The
certificate may need to be exported from the mainframe database or some other
repository and transmitted (FTP) to the client PC. Client software may have a
utilitily to then import the certificate into its database.

Examples

Note: sid represents the server ID.

RACF Examples

1. Define a keyring:
RACDCERT ID(sid) ADDRING(ringname)

2. Connect a certificate and make it the default:
RACDCERT ID(sid) CONNECT(LABEL('certlabel') RING(ringname) DEFAULT)

3, Export a certificate (create MVS dataset) to send to client for import:
RACDCERT ID(sid) EXPORT(LABEL('certlabel')) DSN('dataset_name') -
FORMAT(CERTB64)

Note: Keyring/certificate names and labels are case sensitive. You may use any
case (you can also mix cases), but you must use thethe same case when these
names are referenced in other commands.

A–2 Customization Guide

SAF Considerations for Certificates

eTrust CA-ACF2 Examples

1. Define a keyring:
SET PROFILE(USER) DIV(KEYRING)
INSERT sid.suffix RINGNAME(ringname)

2. Connecting a certificate:
CONNECT LABEL(certlabel) RINGNAME(ringname) DEFAULT

3. Exporting a certificate (create MVS dataset) to send to client for import:
EXPORT sid LABEL(label) DSNAME('dataset_name') FORMAT(CERTB64)

eTrust CA-TopSecret Examples

1. Define a keyring:
TSS ADDTO(sid) KEYRING(ringname)

2. Connect a certificate:
TSS ADDTO(sid) KEYRING(ringname) RINGDATA(sid,certificate_name) DEFAULT

3. Export a certificate (create MVS dataset) to send to client for import:
TSS EXPORT(sid) LABLCERT(label) DIGICERT(certificate_name) -
DSNAME(‘dataset_name’) FORMAT(CERTB64)

Authorizing the TCPaccess/SSL Server User ID

The user IDs to be assigned to the TCPaccess/SSL started tasks must have the
authority to access SAF digital certificate profiles. Use the following SAF
commands to enable this access:

RACF
PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(sid) ACCESS(READ)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(sid) ACCESS(READ)

eTrust CA-ACF2
SET RESOURCE(FAC)
COMPILE
$KEY(IRR) TYPE(FAC)
DIGTCERT.LIST SERVICE(READ) UID(sid) ALLOW
DIGTCERT.LISTRING SEVICE(READ) UID(sid) ALLOW
STORE

eTrust CA-TopSecret
TSS ADMIN(sid) MISC4(CERTLIST)

sid is the user ID assigned to the TCPaccess started task and is the same owning
user ID specified when the certificates were registered.

SSL Considerations A–3

TN3270E/SSL Server Performance

TN3270E/SSL Server Performance
The TN3270E server has configuration parameters, MINTASKS and MAXTASKS,
for the number of tasks for:

■ All non-SSL connections

■ For each Keyring

If MAXTASKS is zero (the default), then additional tasks are started as needed.
It also has a configuration parameter, MAXSESSTASK, for the maximum number
of sessions each task can support. These are provided as tuning tools.

Due to the Language Environment and SSL support, configuring tasks requires
considerable virtual storage. If there are more than 8,192 concurrent connections
then by default multiple tasks is started. If virtual storage becomes limiting then
you can use MAXSESSTASK to increase the number of sessions per task. There is
also the flexibility to lower MAXSESSTASK but at the potential cost of additional
tasks.

During testing, MINTASKS can be used to force a specified number of tasks to be
initialized. Using the IJT command VSM (see the System Management Guide), the
virtual storage use can be monitored in order to determine the acceptable balance
between sessions and tasks.

A–4 Customization Guide

Appendix

B Interface to Unicenter NetSpy

The TCPaccess Telnet Server provides an interface to the Unicenter NetSpy
Network Performance product.

What Unicenter NetSpy Provides
Unicenter NetSpy Network Performance allows you to monitor key performance
metrics for both SNA and TCP/IP networks, gathering and reporting network
and host response time information for both applications and terminals.

Setup
■ The RTM task group must be started. For more information, see the chapter

“TelnetRTM Configuration.”

■ The RTMSSID parameter on the GLOBAL statement in the APPCFGxx must
be set . For more information, see the chapter “Global Application
Parameters.”

■ The subsystem id used for the RTM dataspace must be specified on the
ACCSSRTM parameter in NetSpy.

■ For the LU names defined in the LUPOOL, see the TELNETLU parameter in
NetSpy for what must be coded.

When configuring Unicenter TCPaccess Telnet Server:

■ Do not prevent TN3270E from being negotiated. That is, do not specify
NOTN3270E on the TELNET statment. By default, TN3270E is allowed.

■ Do not prevent responses from being subnegotiated—this is the default. That
is:

– Do not code a FUNCTIONS parameter on the TELNET statement.

– If the FUNCTIONS parameter was specified, include RESPONSE.

Interface to Unicenter NetSpy B–1

 Index

A

ABORT parameter, FTP statement, 11-4

Abstract Body Notation (ASN), 15-1

ACBNAME
changing on APPL statements, 9-59, 9-60, 9-59
customizing for applications, 9-56, 9-57, 9-56
LU names, 9-38
use with APPLUPxx, 9-46

ACBNAME parameter, GLOBAL statement, 8-2

account
data required, 11-26
exit, 11-27

ACCOUNT parameter, FTP statement, 11-4

accounting, FTP, 11-15

ACCTREQ parameter, FTP statement, 11-4, 11-26,
11-4, 11-26, 11-4, 11-26

ACEE, XSEC security parameter, 2-20

ACEXIT00 account exit, 11-27

ACSECPC, XSEC security parameter, 2-20

ADAPTER parameter, LINK statement, 3-35

address
host resolution, 6-2
internet protocol, 3-42
physical hardware, 3-42

Address resolution protocol, 3-42

address space, initialization, 1-5

alias
host name, 6-20
name, 6-3
RPC, 6-38
table in DNRALCxx, 6-6

ALIAS parameter of DNR statement, 6-10

ALL parameter, LPR statement, 13-3

ALLOCATE parameter, LUPOOL statement, 9-41

ALLRT, LINK parameter, 3-35

anonymous
FTP, configuring, 11-15
login, FTP, 11-16
logon, FTP, configuring, 11-4, 11-8, 11-4, 11-8,
11-4, 11-8

API
TELNET statement usage, 9-12

API link
converting to IUCV, 18-12

API parameter, GLOBAL statement, 8-2

APISUBSYS
parameter of DNR statement, 6-10
parameter of PORTMAP statement, 14-4
use with DNRCFGxx, 6-9

APP task group, 1-5

APPCFGxx
configuration file, 1-3
description, 1-1
GLOBAL parameter, 8-1
statements

GAT, 11-20
LPR, 13-2
SERVICE, 11-2, 12-1, 13-1, 11-2, 12-1, 13-1,
11-2, 12-1, 13-1
SMTP, 12-1, 12-7, 12-1, 12-7, 12-1, 12-7
TELNET, 9-1
TERMPROF, 9-48, 9-49, 9-48

APPEND parameter, FTP statement, 11-4

APPL statement, example, 9-27

application dynamic VIPAs, using, 16-11

Application Programming Interface, 9-12

 Index–1

APPLICATIONS parameter, IFSPARM statement, 2-2

APPLID parameter, APPL statement, 9-22, 9-26, 9-22,
9-26, 9-22, 9-26

APPLNAME parameter, SECURITY statement, 2-19

APPLUPxx
customizing, 9-37
example, 9-47, 9-48, 9-47
member of PARM data set, 9-37
possible installation changes

LUPOOL statement, 9-46
statements

LUPOOL, 9-40
LURULE, 9-44

APPLUPxx, description, 1-1

ARMELEMENT parameter, IFSPARM statement, 2-3

ARP
broadcast, 3-36
example, 3-43
HYPERchannel, 3-42
statement, standard dot notation, 3-43
tables, reboot to refresh, 16-4

ARPANET, maximum transmission unit, 3-8

ARPTIMEOUT parameter, MEDIA statement, 3-5

ASCII terminal support, 9-28

ASN (Abstract Syntax Notation), 15-1

ASSIST parameter, MEDIA statement, 3-5

attributes file, 11-20

AUTOLOGON parameter, SERVICE statement, 9-7, 9-
11, 9-7, 9-11, 9-7, 9-11

automatic logon to VTAM applications, 9-11, 9-61, 9-
11, 9-62, 9-11, 9-61

Automatic VIPA Recovery, 16-13

AUTORECALL parameter, FTP statement, 11-5

AUTOSTART parameter
CDLC statement, 3-15
CETI statement, 3-19
CLAW statement, 3-24
HYPER statement, 3-32
LINK statement, 3-36

B

banner messages, 8-2

bind security
configuring, 22-1
statements

BINDSEC, 22-2
IPRULE, 22-5
PORTRULE, 22-2

BINDSEC statement, 22-2

BLKSIZE parameter, GAT statement, 11-20

BPXPRM configuration, 7-2

broadcast ARPs, 3-36

buffers
DASD used by FTP, 11-11
network, 11-8
network output, 11-12

buffers, threshold, 3-18

BUFFERSIZE parameter, TERMPROF statement, 9-50

BUFSIZE parameter
CLAW statement, 3-23
CTC statement, 3-28

bus-and-tag, 3-13

C

C socket replacement library, 18-3

callit(), port mapper procedure, 14-3

CD parameter, FTP statement, 11-5

CDLC
configuring in the NCP, 3-13
driver,overview, 3-13
parameter, MEDIA statement, 3-5
protocol, subchannel for CDLC, 3-13
SNA traffic, 3-14
Statement, 3-14

CETI
driver configuration, 3-17
example, 3-20

channel
attachment
bus-and-tag, 3-13

ESCON, 3-13

Index–2 Customization Guide

number
with CETI, 3-14, 3-17, 3-23, 3-28, 3-34, 3-14, 3-
17, 3-23, 3-28, 3-34, 3-14, 3-17, 3-23, 3-28, 3-34
with HYPER, 3-31

channel-to-channel driver, 3-27

character generator service, 9-13, 9-14, 9-13

character set, 11-5

CHARS parameter, APPL statement, 9-22

CHARSET parameter
CLAW statement, 3-23
FTP statement, 11-5, 11-15, 11-5, 11-15, 11-5, 11-15

CHECKSUM parameter
MEDIA statement, 3-5
UDP statement, 5-12

CIP configuration examples, 16-35

Cisco 7000 configuration, using VIPA, 16-31

CLASS parameter
LPR statement, 13-3, 13-4, 13-3, 13-4, 13-3, 13-4
SECURITY statement, 2-19

CLAW
driver, 3-21
parameter, MEDIA statement, 3-5
statement, 3-21
statement,example, 3-27
usage notes, 3-21

CLUSTER, MEDIA Name, 9-6

command directory for FTP, 11-5

COMMAND, XSEC security parameter, 2-20

COMMUNITY statement, SNMCFGxx, 15-5

community usage with SNMP, 15-3

COMPACT parameter, GAT statement, 11-20

compile MIB definitions, 15-14

CONDDISP parameter
FTP statement, 11-6
GAT statement, 11-21

configuration
CIP examples, 16-35
Cisco 7000, 16-31
DNR member functionality, 1-4
member description, 1-1
member roadmap, APPCFGxx, 1-3

CONNECT parameter, TCP statement, 5-3

connection
detecting broken, 9-11
termination, 11-4

CONTRACT parameter, POOLDEF statement, SNMP,
15-5

control block pools
DNRCFGxx, 20-3
IJTCFGxx, 20-4
SNMCFGxx, 20-5
TCPCFGxx, 20-4

control unit type, 3-31

CPASSWORD parameter, SERVICE statement, 9-7

CSECT IUCVCONS table, 19-3

CTC
driver description, 3-27
examples, 3-29
statement, 3-27, 3-28, 3-27, 3-28, 3-27, 3-28

custom FTP greeting, 11-15

CUTYPE parameter
CETI statement, 3-17
HYPER statement, 3-31
LCS statement, 3-34

CYCLE parameter, SMTP statement, 12-8

CYCLEMAX parameter of DNR statement, 6-10

D

data set attributes, 11-20

data space, 2-10, 2-11, 2-10

DATACLAS parameter, GAT statement, 11-21

DATACLOSE parameter, FTP statement, 11-6

DATAIDLE parameter, FTP statement, 11-6

DATAOPEN parameter, FTP statement, 11-6

DATAPORTTOS parameter, FTP statement, 11-6

DATASET, XSEC security parameter, 2-20

DATASETMODE parameter, FTP statement, 11-6

DATASPACESIZE parameter, IFSPARM statement,
2-4

date and time service, 9-14

DCBDSN parameter, GAT statement, 11-21

 Index–3

DDN, maximum transmission unit, 3-8

DEBUG parameter
FTP statement, 11-7
PORTMAP statement, 14-4

DEFAULT parameter
APPL statement, 9-22
TELNET statement, 9-16, 9-20, 9-16, 9-20, 9-16,
9-20

DEFGAT parameter, FTP statement, 11-7

DEFLRCV parameter
RAW statement, 5-17
TCP statement, 5-4
UDP statement, 5-13

DEFLRECV parameter
RAW statement, 5-17
TCP statement, 5-4
UDP statement, 5-13

DEFLSEND parameter
RAW statement, 5-18
TCP statement, 5-4
UDP statement, 5-13

DEFLSND parameter
RAW statement, 5-18
TCP statement, 5-4
UDP statement, 5-13

DEFPRFX parameter, FTP statement, 11-7

DEFQRCV parameter
RAW statement, 5-17
UDP statement, 5-13

DEFQRCV parameter,
TCP statement, 5-3

DEFQRECV parameter
RAW statement, 5-17
TCP statement, 5-3
UDP statement, 5-13

DEFQSEND parameter
RAW statement, 5-17
TCP statement, 5-3
UDP statement, 5-13
TCP statement, 5-3
UDP statement, 5-13

DEFRCVBUF parameter
RAW statement, 5-17
TCP statement, 5-4
UDP statement, 5-13

DEFRECVBUF parameter

RAW statement, 5-17
TCP statement, 5-4
UDP statement, 5-13

DEFSENDBUF parameter
RAW statement, 5-18
TCP statement, 5-4
UDP statement, 5-13

DEFSNDBUF parameter
RAW statement, 5-18
TCP statement, 5-4
UDP statement, 5-13

DELAYACK parameter, TCP statement, 5-3

DEST parameter, NETWORK statement, 3-10

DEST parameter, ROUTE statement, 4-4

DESTID parameter of LPR statement, 13-3

DEVADDR parameter
CDLC statement, 3-14
CETI statement, 3-17
CLAW statement, 3-23
CTC statement, 3-28
HYPER statement, 3-31
LCS statement, 3-34

diagram
multihoming, 16-5
OSPF network, 16-23
OSPF network configuration with virtual link,
16-24

directory
commands for FTP, 11-5
 information, DNR, 6-8

dirsrv() API call, 6-2

discard service, 9-13, 9-14, 9-13

DIVERT parameter, SMTP statement, 12-8

DNR
alias table and DNRALCxx, 6-6
configuration members, 6-6, 6-8, 6-6, 6-8, 6-6, 6-8
directory information, 6-8
dirsrv() API call, 6-2
DNRGET command, 6-7
examples

configuration data only, 6-40
migration to Domain Name System, 6-42
using only Domain Name System, 6-45

host
name resolution, 6-4
table for LOCAL use, 6-6

Index–4 Customization Guide

initial customization, 6-5
introduction, 6-1, 6-2, 6-1
LOCAL mode, 6-8
parameter of GLOBAL statement, 8-2
search list configuration, 6-24
secondary configuration members

introduction, 6-16
services, 6-2
statement Body, 6-9
stopping and starting, 6-5
suffix conventions, 6-5
task group, 1-5, 6-1, 1-5, 6-2, 1-5, 6-1
usage notes, 6-13

DNR configuration
for a network with a domain name server, 6-48
member functionality, 1-4
with a firewall, 6-53
without a domain name server, 6-50

NAMESERVER parameter, 6-11

DNRALC00, format, 6-21

DNRALCxx
coordinating with DNRSLCxx, 6-27
customizing, 6-21
description, 1-1, 6-6, 1-1, 6-6, 1-1, 6-6
initial configuration, 6-6
recommendations, 6-28

DNRCFGxx
customizing, 6-9
description, 6-6
initial configuration, 6-6

DNRCFGxx, control block pool table, 20-3

DNRGET, TSO command, 6-2, 6-7, 6-2, 6-7, 6-2, 6-7

DNRHSTxx
description, 1-1, 6-6, 1-1, 6-6, 1-1, 6-6
initial configuration, 6-6

DNRNETxx
customizing, 6-34
description, 1-1, 1-2, 1-1

DNRNPCxx
customizing, 6-32, 6-33, 6-32, 6-33, 6-32, 6-33
description, 1-2

DNRNSCxx
customizing, 6-29, 6-30, 6-29, 6-30, 6-29, 6-30
description, 1-2, 6-7, 1-2, 6-7, 1-2, 6-7
initial configuration, 6-7

DNRPRTxx
customizing, 6-35

description, 1-2

DNRRPCxx
customizing, 6-39
description, 1-2

DNRSLCxx
coordinating with DNRALCxx, 6-27
customizing, 6-25
description, 1-2, 6-7, 1-2, 6-7, 1-2, 6-7
initial configuration, 6-7
recommendations, 6-28
search list configuration member, 6-24

DNRSVCxx
customizing, 6-37
description, 1-2

DNS
components, 6-2, 6-3, 6-2
name resolution to IP address for IUCV, 18-2
name, domain name space, 6-2, 6-3, 6-2
usage with DNR, 6-8

domain name
fully qualified name, 6-3
partially qualified name, 6-3

Domain Name Resolver. See DNR. See DNR. See DNR

Domain Name Server. See DNS. See DNS. See DNS

Domain Name System. See DNS. See DNS. See DNS

dot notation, 4-3, 6-28, 6-32, 4-3, 6-28, 6-32, 4-3, 6-28,
6-32

double byte character set, 11-5

DPI
functions, 15-16
SNMP, 15-9

DPIawait_packet_from_agent(), 15-27

DPIconnect_to_agent_TCP(), 15-29

DPIdebug(), 15-26

DPIdisconnect_from_agent(), 15-30

DPIget_fd_for_handle(), 15-31

DPISAMPL, testing DPI functionality, 15-12

DPIsend_packet_to_agent(), 15-32

DS component name, 2-10, 2-11, 2-10

DYNAMIC parameter, TELNET statement, 9-16

dynamic VIPA
characteristics, 16-10

 Index–5

resolving conflicts, 16-12
using, 16-11

E

echo service, 9-13, 9-14, 9-13

ESCON
channel attachment, 3-13
with 3746-900 frame, 3-14

ETHERNET parameter, MEDIA statement, 3-5, 22-2,
3-5, 22-2, 3-5, 22-2

EWASIZE parameter, EXIT statement, 2-15

examples
CIP configuration, 16-35
DNR configuration

for a network with a domain name server, 6-
48
with a firewall, 6-53
without a domain name server, 6-50

exit, account, 11-27

EXIT statement, 2-15

EXPAND parameter
POOLDEF statement, 15-5
POOLDEF statement, SNMP, 15-5

EXPDT parameter, GAT statement, 11-21

EXPDTCHK parameter, FTP statement, 11-7

expiration date, 11-21

Exterior Gateway Protocol. See EGP. See EGP. See EGP

F

FASTRX parameter, TCP statement, 5-4

fault tolerance, 16-2
MEDIA statement, 16-27
to balance I/O traffic, 16-4
VIPA, 16-8

FDDI parameter, MEDIA statement, 3-5

fDPIparse(), 15-18

fDPIparse(), 15-18

fDPIset(), 15-27

file attributes, configuring for FTP, 11-20

FILESTYPE statement, asynchronous Open Edition
Socket support entry point, 7-3

FILESYSTYPE statement, BPXPRMxx parameter, 7-3

FLIST parameter, SMTP statement, 12-8

FLUSH parameter of LPR statement, 13-4

FORWARD parameter, IP statement, 5-20

forwarding, 5-20

FTP
account data required, 11-26
accounting, 11-15
anonymous logon, 11-4
configuration, 11-3
configuring

anonymous logon, 11-8
FTP statement, 11-15

custom greeting, 11-15
to tape, 11-8
translation tables, 11-15

FTP to Tape, 11-10

FTPCMND parameter, EXIT statement, 2-15, 2-16,
2-15

FTPLOGIN parameter, EXIT statement, 2-16

FTPRSRCE parameter, EXIT statement, 2-16

fully qualified
domain names, 6-20
names, 6-27

FUNCTIONS parameter, TELNET statement, 9-15

FWIDLE parameter, TCP statement, 5-4

G

GAT statement
customizing, 11-24
description, 11-20
example, 11-25
setting attributes, 11-20

GateD
configuration, 16-25, 17-1, 16-25, 17-2, 16-25, 17-1
example, 16-25
gateway daemon, description, 16-2
GTDCFG00 of PARM data set, 16-25
routing protocol, 16-27
VIPA use with, 16-9

Index–6 Customization Guide

GATED parameter, IP statement, 5-20

gateway daemon, See GateD, 16-21

generalized trace facility, GTF, 2-2

GLBLACT, XSEC security parameter, 2-20

GLBLCMD, XSEC security parameter, 2-20

GLOBAL parameter, APPCFGxx member, 8-1

GLOBAL statement
API parameter, 8-2
DNR parameter, 8-2
GREETING parameter, 8-2
JES parameter, 8-2
LUPARM parameter, 8-3
MIGVOL parameter, 8-3
RTMSSID parameter, 8-3
SMS parameter, 8-3
SVC99WTO parameter, 8-4
TRANTBL parameter, 8-4

GREETING parameter, GLOBAL statement, 8-2

greeting, custom FTP, 11-15

GROUP parameter, TERMPROF statement, 9-49, 9-50,
9-49, 9-51, 9-49, 9-50

GTDCFGxx
description, 1-1, 17-1, 1-1, 17-2, 1-1, 17-1
GateD configuration member, 17-1, 17-2, 17-1
sample, 16-25

GTF records, 2-2

GTFID parameter, IFSPARM statement, 2-2

GUEST parameter, FTP statement, 11-4, 11-8, 11-15,
11-4, 11-8, 11-15, 11-4, 11-8, 11-15

guest, FTP configuring, 11-15

H

HA parameter, ARP statement, 3-42

HASH parameter
TCP statement, 5-5

high level qualifier for mail, 12-2

hop count, metric, 16-22

host
aliases examples, 6-23
name aliases, 6-20
name examples, 6-18

name resolution by DNR, 6-4
name using DNRHSTxx, 6-6
table

local usage, 6-6
usage with DNRHSTxx, 6-17

HOSTCKSUM parameter, MEDIA statement, 3-5

HOSTNAME parameter, CLAW statement, 3-23

HOSTREPL parameter, SMTP statement, 12-9

HOSTTABLE parameter of DNR statement, 6-10

HPNS
IFSPARM Statement, 19-2
libraries for C applications, 18-12, 19-5, 18-12, 19-
5, 18-12, 19-5
TCPIP.DATA, 19-3

HSM
FTP timeout considerations, 11-16
parameter, FTP statement, 11-8
recall environment, 11-5
recall wait time, 11-8

HYPER statement, 3-31, 3-33, 3-31, 3-33, 3-31, 3-33

HYPERchannel
configuration, 3-31
maximum transmission unit, 3-8

HYPERCHANNEL parameter, MEDIA statement, 3-5

I

IBM Server configuration, 11-16

IBM TCP/IP, converting to IUCV, 18-11

IBUF parameter
CDLC statement, 3-14
CETI statement, 3-17
CLAW statement, 3-23
CTC statement, 3-28
FTP statement, 11-8
HYPER statement, 3-31
LCS statement, 3-34
SERVICE statement, 9-7

IBUF parameter, LPR statement, 13-3

ICMPREDIRECT parameter, MEDIA statement, 3-5

IDLE parameter, SERVICE statement, 9-8, 9-11, 9-8, 9-
11, 9-8, 9-11

idle TELNET session, 9-11

 Index–7

IDLENET parameter, MEDIA statement, 3-6

IDRC compaction, 11-20

IFS runtime environment, 2-1

IFSPARM statement, 2-2

IFSPARM Statement
HPNS, 19-2
IUCV, 18-10

IGP, interior gateway protocol, 16-21

IJT task group, 1-5

IJTCFGxx
description, 1-1
editing for IUCV, 18-10
member, IFSPARM statement, 2-2

improving throughput performance, 16-4

INADDRANYPORT USS (OE), CINET, 7-7

INBXFLD parameter, SMTP statement, 12-9

Infrastructure (IFS),runtime environment, 2-1

INITIAL parameter
POOLDEF statement, 20-2
POOLDEF statement, SNMP, 15-5

interface names for TCPaccess, 17-3, 17-4, 17-3

interior gateway protocol (IGP) used by GateD, 16-21

internal trace, 6-10

INTERNALIUCV parameter, IFSPARM statement, 2-4

INTERNALTRACE parameter of DNR statement,
6-10

internet address, DNR usage, 6-1, 6-2, 6-1

internet protocol suite, TCP task group, 1-5

interrupts, 3-20

INTERVAL parameter, SMF statement, 2-14

IP
addressing, defining, 3-10
datagrams, 3-13
protocol, 3-13
statement, 5-20
traffic to the mainframe, 3-14

IPADDRESS parameter, NETWORK statement, 3-10

IPADDRESS parameter, SERVICE statement, 9-8

IPARM parameter, CETI statement, 3-18

IPNOTIFY parameter, TCP statement, 5-5

IPRULE Statement, 22-5

IPTH pool for IUCV, 18-10

ISPFENQ parameter
FTP statement, 11-9
GAT statement, 11-21

ISPFRES parameter
FTP statement, 11-9
GAT statement, 11-22

IUCV
address space, starting and stopping, 18-14
C socket replacement library, 18-3
C sockets runtime library, 18-6
caution, 18-2
configuring TCPIP.DATA

data set, 18-6
connecting to started task, 18-6
converting from

API link, 18-12
IBM TCP/IP, 18-11

editing IJTCFGxx member, 18-10
IFSPARM Statement, 18-10
implementing, 18-2
initialization, 18-2
initializing (troubleshooting), 18-4
IUCVMULT required, 18-4
libraries for C applications, 18-12
limitations and restrictions, 18-15
monitoring JES output log, 18-5
multiple name servers, default not supported,
18-7
name resolution, 18-2
new IPTH pool, 18-10
overview, 18-2
references, additional, 18-15
service routines supported, 18-4
socket compatibility, 18-4
sockets, 18-1
TCPIP.DATA, 18-8
VMCF hard-coded subsystem name, 18-2

IUCV libraries for C applications, 19-5

IUCVCONS CSECT table, 18-9

IUCVMULT, drequired for IUCV, 18-4

J

JES

Index–8 Customization Guide

parameter of GLOBAL statement, 8-2
spool usage with SMTP, 12-2

JES3CWTR parameter, SMTP statement, 12-9

JESFILTER, FTP keyword, 11-9

JESPUTGETTO, FTP keyword, 11-9

K

KACOUNT parameter, TCP statement, 5-5

KATIMER parameter, TCP statement, 5-6

KEEPALIVE parameter, SERVICE statement, 9-8

KEEPALIVE parameter, TCP statement, 5-5

KEEPALIVECOUNT parameter, TCP statement, 5-5

KEEPALIVETIMER number, 11-8

KEEPALIVETIMER parameter, TCP statement, 5-6

KEYRING statement, 9-30

L

LABEL parameter
FTP statement, 11-9
GAT statement, 11-22

LCS statement, 3-33

LCSNAME parameter, LINK statement, 3-35

libraries for C applications and IUCV or HPNS, 18-12,
19-5, 18-12, 19-5, 18-12, 19-5

link level network adapter, 3-1, 3-35, 3-1, 3-35, 3-1,
3-35

LINK statement, 3-35
ALLRT, 3-35
example, 3-38
LOCALADDR, 3-36
NORIF, 3-35
SINGLERT, 3-35
TRANSPARENT, 3-35
transparent vs. source routing, 3-38

link-state, OSPF, 16-22

LIST command, 11-10

LISTFMT parameter, FTP statement, 11-10

LKEDRES parameter

FTP statement, 11-10
GAT statement, 11-22

LNI configuration, 3-33

local
name server, 6-31
names, definition of, 6-3

LOCAL DNR mode configuration, 6-8

LOCALADDR, LINK parameter, 3-36

LOG parameter, EXIT statement, 2-16

LOGDATA parameter, APPL statement, 9-22

LOGGING statement
IJTCFGxx, 2-7
logical grouping of keywords, 2-9
SNMCFGxx, 15-6

logical record length, 11-22

LOGMODE3270E, TERMPROF parameter, 9-49, 9-50,
9-49

LOGMODENAME parameter, TERMPROF
statement, 9-49, 9-50, 9-51, 9-49, 9-50

LOGOFF, XSEC security parameter, 2-20

logon to VTAM applications, 9-11

LOGON, XSEC security parameter, 2-21

lookup_host(), 15-25

LPR statement
description, 13-2
example, 13-5
usage notes, 13-1

LRECL parameter
GAT statement, 11-22

LRECL parameter, SMTP statement, 12-9

LU
name changing in PLU pool, 9-57, 9-58, 9-57
name pools, 9-38
name rules, 9-39
names assigned to Server Telnet users, 9-37
parameter, LUPOOL statement, 9-41
pool configuration member, 8-3
pool facility, 9-37
usage with LUPOOL, 9-38
usage with LURULE, 9-39
virtual terminal LU names, 9-58, 9-59, 9-58

LUPARM parameter, GLOBAL statement, 8-3

 Index–9

LUPOOL statement
for possible installation changes in APPLUPxx,
9-46
REFRESH command, 9-40
syntax, 9-40

LURULE statement
syntax, 9-44

M

MAC parameter, ARP statement, 3-42

mail, 12-1, 12-2, 12-1, 12-2, 12-1, 12-2
agent, 12-1, 12-2, 12-1, 12-2, 12-1, 12-2
configuring SMTP, 12-1, 12-2, 12-1, 12-2, 12-1,
12-2
high level qualifier, 12-2
SMTP using SERVICE statement, 12-21

mail return codes and explanations, 12-14

MANAGEMENTCLAS parameter, GAT statement,
11-22

MAP task group, 1-5, 14-1, 14-4, 1-5, 14-1, 14-4, 1-5,
14-1, 14-4

MAPCFGxx
customizing, 14-4
description, 1-2
description of portmapper, 14-1

mapping
host names, 6-17
network name/number, 6-33
protocol name to address, 6-35
protocol name/address, 6-35
protocol name/service, 6-36
RPC name/program number, 6-38
RPC port/program, 14-2

MASK parameter, ROUTE statement, 4-5

mask, subnet, 3-11

maximum segment size (MSS), regulates TCP
segments, 3-9

Maximum Transmission Unit (MTU), 3-8

MAXLRCV parameter
RAW statement, 5-18
TCP statement, 5-7
UDP statement, 5-14

MAXLRECV parameter

RAW statement, 5-18
TCP statement, 5-7
UDP statement, 5-14

MAXLSEND parameter
RAW statement, 5-19
TCP statement, 5-7
UDP statement, 5-15

MAXLSND parameter
RAW statement, 5-19
TCP statement, 5-7
UDP statement, 5-15

MAXLTRCV parameter
RAW statement, 5-19
TCP statement, 5-8
UDP statement, 5-15

MAXLTRECV parameter
RAW statement, 5-19
TCP statement, 5-8
UDP statement, 5-15

MAXLTSEND parameter
TCP statement, 5-8
UDP statement, 5-15

MAXLTSND parameter
RAW statement, 5-19
TCP statement, 5-8
UDP statement, 5-15

MAXQLSTN parameter
TCP statement, 5-6
UDP statement, 5-13

MAXQRCV parameter
RAW statement, 5-18
TCP statement, 5-6
UDP statement, 5-14

MAXQRECV parameter
RAW statement, 5-18
TCP statement, 5-6
UDP statement, 5-14

MAXQSEND parameter
RAW statement, 5-18
TCP statement, 5-6
UDP statement, 5-14

MAXQSND parameter
RAW statement, 5-18
UDP statement, 5-14

MAXRCVBUF parameter
RAW statement, 5-18
TCP statement, 5-7

Index–10 Customization Guide

UDP statement, 5-14

MAXRECVBUF parameter
RAW statement, 5-18
TCP statement, 5-7
UDP statement, 5-14

MAXRXMIT parameter, TCP statement, 5-7

MAXRXTIME parameter, TCP statement, 5-7

MAXSENDBUF parameter
RAW statement, 5-19
TCP statement, 5-7
UDP statement, 5-15

MAXSENDS parameter of DNR statement, 6-10

MAXSNDBUF parameter
RAW statement, 5-19
TCP statement, 5-7
UDP statement, 5-15

MAXTIME parameter of DNR statement, 6-10

MAXTRCV parameter
RAW statement, 5-19
TCP statement, 5-8
UDP statement, 5-15

MAXTRECV parameter
RAW statement, 5-19
TCP statement, 5-8
UDP statement, 5-15

MAXTSEND parameter
RAW statement, 5-19
TCP statement, 5-8
UDP statement, 5-15

MAXTSND parameter
TCP statement, 5-8
UDP statement, 5-15

MEDIA
fault tolerance parameters, 16-27
statement, 3-4

MEDIA Name, CLUSTER, 9-6

MEDIA statement
CDLC considerations, 3-9
maximizing throughput, 3-9
Maximum Receive Segment Size, 3-9
MTU, 3-8

MEDIANAME parameter
ARP statement, 3-42
CDLC statement, 3-14
CETI statement, 3-18

CLAW statement, 3-23
CTC statement, 3-28
HYPER statement, 3-31
LINK statement, 3-36
NETWORK statement, 3-10

MEDIANAME parameter, ROUTE statement, 4-5

member format
DNRALC00, 6-21
DNRALCxx, 6-21
DNRNETxx, 6-34
DNRNPCxx, 6-32
DNRNSC00, 6-30
DNRNSCxx, 6-30
DNRPRTxx, 6-35
DNRSLCxx, 6-25
DNRSVCxx, 6-37

message
banner, 8-2
gap time, 3-18
IUCV, monitoring JES output log, 18-5
logging, 2-7

METRIC parameter, NETWORK statement, 3-10

MIB definitions, compiling, 15-14

MIGRATEVOL parameter, FTP statement, 11-10

MIGVOL parameter, GLOBAL statement, 8-3

MINDEV parameter, TCP statement, 5-8

MINIMUM parameter, POOLDEF statement, SNMP,
15-5

MINRXTIME parameter, TCP statement, 5-9

mkDPIlist(), 15-17

mkDPIregister(), 15-19

mkDPIresponse(), 15-19

mkDPIset(), 15-20

mkDPItrap(), 15-22

mkDPItrape(), 15-23

MODULE parameter, SERVICE statement
FTP, 11-2
Telnet, 9-6

MOUNT parameter, FTP statement, 11-10

MSS (maximum segment size), 3-9

MSSDEF parameter, MEDIA statement, 3-6

MSSOPT parameter, MEDIA statement, 3-7

 Index–11

MTU parameter, MEDIA statement, 3-7

MTU, description, 3-8

multi-access, non-broadcast, 16-26

multihome
Automatic Network Selection, 4-6
definition, 3-13
diagram, 16-5
DNR considerations, 6-46
fault tolerant description, 16-5
forwarding, 5-20
routing description, 4-3
SNM considerations, 15-8
VIPA use, 16-8
with GateD, 16-27

multiple name servers, default not supported for
IUCV, 18-7

multiplexing, 3-12
description, 16-2
in round robin fashion, 16-4

MX parameter, SMTP statement, 12-10

N

name
alias, 6-3
aliases using DNRALCxx, 6-20
DNR resolution, 6-4
domain

fully qualified, 6-3
partially qualified, 6-3

domain name space, 6-2, 6-3, 6-2
domain name specification, 6-3
host resolution, 6-2
local, 6-3
local name server, 6-31
LU names, 9-38
mapping, 6-33
network, 6-3
network to name mapping, 6-33
protocol, 6-3, 6-36, 6-3, 6-36, 6-3, 6-36
resolution, 1-5
resolver, 6-2, 6-3, 6-2
RPC, 6-38
server, 6-2, 6-3, 6-2
server example, 6-31
server table DNRNSCxx, 6-7
service, 6-3

NAME parameter

APPL statement, 9-21, 9-26, 9-21, 9-26, 9-21, 9-26
LCS statement, 3-34
LUPOOL statement, 9-40
SERVICE statement, 9-6, 11-2
POOLDEF statement, SNMP, 15-5

NAMESERVER parameter, DNR statement, 6-29

national use characters table, 21-3

NCP link, 3-14

NDAB parameter, FTP statement, 11-11

NEGOTIATE parameter, TELNET statement, 9-10,
9-17, 9-10, 9-17, 9-10, 9-17

NET parameter, LPR statement, 13-3

NETMASK parameter, NETWORK statement, 3-10

NetSpy interface, B-1

network
mapping, 6-33
name, 6-3

examples, 6-34
name to number mapping, 6-33
preference example, 6-33
preferences, 6-32
routing, 6-32

NETWORK
BPXPRMxx parameter, 7-4
parameter of DNR statement, 6-11
statement

description, 3-10
example, 3-13
usage notes, 3-11

NETWORKPREF
parameter of DNR statement, 6-11
parameter of DNRCFGxx statement, 6-32

NLSTCASE parameter, FTP statement, 11-11

NOCD parameter, FTP statement, 11-15

non-broadcast multi-access, 16-26

NOPERSIST parameter, FTP statement, 11-11

NORIF, LINK parameter, 3-35

NOTN3270E parameter, TELNET statement, 9-16, 9-
17, 9-16

Novell LAN Workplace, 11-15

numbuf, 11-8

Index–12 Customization Guide

O

Object Identifiers, OID, 15-2

OBTAINLU parameter, TELNET statement, 9-9, 9-17,
9-9, 9-17, 9-9, 9-17

OBUF parameter
CDLC statement, 3-15
CETI statement, 3-18
CLAW statement, 3-23
CTC statement, 3-28, 3-29, 3-28
FTP statement, 11-12
HYPER statement, 3-32
LCS statement, 3-34
SERVICE statement, 9-8

OFFLOADCKSUM parameter, MEDIA statement, 3-5

OID, Object Identifiers, 15-2

OPARM parameter, CETI statement, 3-18

open shortest path first, 16-22

open systems, interior and exterior routing protocols,
16-21

OPTIONS parameter
APPL statement, 9-23, 9-26, 9-23, 9-26, 9-23, 9-26
TELNET statement, 9-17, 9-18, 9-17

OSPF
diagram with virtual link, 16-24
open shortest path first, 16-22
routing protocol supported by GateD, 16-22
three area network diagram, 16-23

OUTLIM parameter
FTP statement, 11-12
LPR statement, 13-3

OUTLIM parameter TP statement, 12-10

OVERWRITE parameter, FTP statement, 11-12

overwriting data with FTP, 11-12

P

PA parameter, ARP statement, 3-42

PACKED parameter, CLAW statement, 3-23

pad characters, 11-14

PAD parameter, FTP statement, 11-12

PARALLELMOUNT parameter, GAT statement,
11-22

PARM parameter, EXIT statement, 2-15

partially qualified
domain names, 6-20
names, 6-27

PASS parameter
APPL statement, 9-24
TELNET statement, 9-18

PASSWORD parameter, SMTP statement, 12-10

PATH
parameter on SMTP statement, 12-2
parameter, SMTP statement, 12-10

pDPIpacket(), 15-24

PDS enqueue, 11-18, 11-24, 11-25, 11-18, 11-24, 11-25,
11-18, 11-24, 11-25

PDSE parameter, GAT statement, 11-23

persistent SITE, 11-11

PFILTER parameter, LINK statement, 3-36

PFS
assigning docket domains or address families, 7-4
identifying to UNIX System Services, 7-3

physical medium, defining, 3-4

PLU pool, 9-57, 9-58, 9-57

POLL parameter, SERVICE statement, 9-8, 9-11, 9-8,
9-11, 9-8, 9-11

polling, detecting broken connections, 9-11

pool
APPL statements, 9-55, 9-56, 9-55
for IJTCFGxx, 20-4
for SNMCFGxx, 20-5
forTCPCFGxx, 20-4
LU pool, 9-37
types, 20-3

POOLDEF statement
description, 20-1
DNR usage, 6-9
DNRCFGxx, 20-3
IJTCFGxx, 20-4
pools, 20-3
SNMCFGxx, 15-4, 20-5, 15-4, 20-5, 15-4, 20-5
TCPCFGxx, 20-4

port

 Index–13

mapper protocol, 14-1
mapping, 14-2
number configuration, 11-2, 12-1, 13-1, 11-2, 12-1,
13-1, 11-2, 12-1, 13-1
numbers, associating with RPC programs, 14-2

port mapping sequence diagram, 14-3

PORT parameter
APPL statement, 9-24
FTP statement, 11-13
LPR statement, 13-3
SERVICE statement, 9-7, 11-2, 9-7, 11-2, 9-7, 11-2
SMTP statement, 12-10
TELNET statement, 9-18

PORT statement, SNMCFGxx member, 15-4

PORTASGN parameter
TCP statement, 5-9
UDP statement, 5-15

portmapper, 14-1

PORTRULE statement, 22-2

POSTM parameter, SMTP statement, 12-10

preferred routes, 6-32

PRELU parameter, SERVICE statement, 9-9

PRINTALL parameter, SMTP statement, 12-10

printer
queue name, 13-4
services, 9-13, 13-2, 9-13, 13-2, 9-13, 13-2

configuring LPR, 13-2
LPR statement, 13-1, 13-3, 13-1, 13-3, 13-1,
13-3

SYSOUT class configuration, 13-4

PRIVATE parameter, GAT statement, 11-22

PROFILE paramet, SECURITY statement, 2-19

PROGRAM parameter, EXIT statement, 2-15

PROMPT parameter, IFSPARM statement, 2-4

protocol
names

example, 6-36
locally managed, 6-3
mapping to address, 6-35

service, 6-36

PROTOCOL parameter, DNR statement, 6-11, 6-35,
6-11, 6-35, 6-11, 6-35

Protocols statements, Protocol Trace Options table,
17-12

PROVIDER parameter, APPL statement, 9-29

Q

QLISTEN parameter, SERVICE statement
FTP, 11-2
Telnet, 9-9

qualified names, using DNRSLCxx, 6-7

query_DPI_port(), 15-24

QUERYWAIT parameter of DNR statement, 6-11

queue name printer, 13-4

queue name, printer, 13-4

queued listen table, 9-9, 11-2, 9-9, 11-2, 9-9, 11-2

R

RAW Statement, 5-17

RAW, TELNET statement usage, 9-12

RAWRECV parameter, EXIT statement, 2-18

RAWSEND parameter, EXIT statement, 2-18

RAWSOCK parameter, EXIT statement, 2-18

RDW parameter, FTP statement, 11-13

read_dpi_packet_on_fd(), 15-33

REASSEMBLYTIMEOUT parameter, IP statement,
5-20

RECFM parameter, GAT statement, 11-23

RECURSIVE parameter of DNR statement, 6-11

REFRESH LUPOOL command, 9-40

RELEASE parameter, FTP statement, 11-13

REMOTE parameter, SMTP statement, 12-11

REQID parameter, SECURITY statement, 2-19

resolution for IUCV, 18-2

resolver, 6-2, 6-3, 6-2

resolving dynamic VIPA conflicts, 16-12

RESTART parameter

Index–14 Customization Guide

CDLC statement, 3-14
CETI statement, 3-18
CLAW statement, 3-24
CTC statement, 3-29
HYPER statement, 3-32
LCS statement, 3-35

restart time interval, 3-24

retention period, 11-21

RETPD parameter, GAT statement, 11-21

retransmit timer, 5-7, 5-9, 5-7, 5-9, 5-7, 5-9

return codes, mail, 12-14

RETURN parameter, SMTP statement, 12-11

RIP
accessing with member GTDCFG00, 16-7
routing information protocol supported by
GateD, 16-21

roadmap, configuration members, 1-3

roundtrip time, 5-8

ROUNDTRIPDEV parameter, TCP statement, 5-9

ROUNDTRIPINIT parameter, TCP statement, 5-10

ROUTE
parameter of ROUTE statement, 4-4
parameter, SMTP statement, 12-11
statement

defining routes, 4-2
description, 4-1, 4-2, 4-1, 4-2, 4-1, 4-2
multiple default ROUTE statements, 4-3

route selections, 4-2

routing
configuration, 4-2
GateD configuration, 16-27
preferred, 6-32

routing information protocol (RIP), 16-21

routing protocol
open systems’ interior and exterior, 16-21
supported by GateD, 16-21

RPC
alias, 6-38
based server programs, 14-1
MAP task group, 1-5
mapping programs/version numbers, 14-1
name

example, 6-40
mapping, 6-38

program number mapping, 6-38

RPCNAMES parameter of DNR statement, 6-12

RTD parameter of TCP statement, 5-9

RTM
task group, 1-5
parameter, TELNET statement, 9-18, 9-19, 9-18

RTMSSID parameter, GLOBAL statement, 8-3

RTNGAT parameter, SMTP statement, 12-11

RTNWTR parameter, SMTP statement, 12-8

RTO parameter of TCP statement, 5-10

S

SCALE parameter, TCP statement, 5-10

search
by DNR, 6-4
list recommendations, 6-28

SEARCHLIST parameter, DNR statement, 6-12, 6-24,
6-12, 6-24, 6-12, 6-24

secondary DNR members, 6-16

SECONDARYNAME parameter, IFSPARM
statement, 2-4

SECURITY
parameter, APPL statement, 9-24
statement, IJTCFGxx, 2-19

segment size, 3-9

SELECT parameter of LPR statement, 13-4

SENDSYN parameter, EXIT statement, 2-16, 2-17, 2-16

SEP parameter, SMTP statement, 12-11

Server FTP for JES, 11-28
Examples, 11-32
Minimum Requirements, 11-28
Using, 11-29

Server FTP JES support
JESFILTER, 11-9
JESPUTGETTO, 11-9

Server Telnet, LU names, 9-37

servers, name, 6-2, 6-3, 6-2

service name
example, 6-38

 Index–15

locally managed, 6-3

SERVICE statement
example, 9-12, 13-2, 9-13, 13-2, 9-12, 13-2
in APPCFGxx member, 9-14, 11-2, 12-1, 13-1, 9-14,
11-2, 12-1, 13-1, 9-14, 11-2, 12-1, 13-1

services, user-level, 11-2

SERVICES parameter of DNR statement, 6-12, 6-36, 6-
12, 6-36, 6-12, 6-36

services, user-level, 12-1, 13-1, 12-1, 13-1, 12-1, 13-1

session manager, using automatic logon, 9-61, 9-62,
9-61

Simple Mail Transfer, 12-1

Simple Network Management Protocol, 15-2

single byte character set, 11-5

SINGLENOOP parameter, CLAW statement, 3-24

SINGLERT, LINK parameter, 3-35

SITE parameter reset, 11-11

SITEALLOC parameter, FTP statement, 11-13

SITEOVERWRITE parameter, FTP statement, 11-14

SITEREPLY parameter, FTP statement, 11-14

SMF
account exit, 11-27
defining, 11-26
description, 11-26
parameter, 2-17
records generated, 2-13
statement, 2-13

SMS
data class specification, 11-21
management class, 11-22

SMS parameter, GLOBAL statement, 8-3

SMTP
configuring, 12-1, 12-2, 12-1, 12-2, 12-1, 12-2
customizing, 12-3
OUTCLASS parameter, 12-6
statement

example, 12-21
in APPCFGxx member, 12-1, 12-7, 12-1, 12-7,
12-1, 12-7

statement in APPCFGxx member, 12-1
using SERVICE statement, 12-21

SNA traffic, 3-14

SNM
example, 15-8
task group, 1-5, 15-2, 1-5, 15-2, 1-5, 15-2

SNMCFGxx
customizing, 15-4
description, 1-2, 15-2, 1-2, 15-2, 1-2, 15-2
member of PARM data set, 15-3

SNMP
activation, 15-3
agent

proper management, 15-8
SNM task group, 1-5

agent, supported traps, 15-3
requests, 15-2

SNMP DPI
benefits, 15-10
functions, 15-16
introduction, 15-9
JCL, 15-10
linking applications, 15-10
process, 15-9

source routing, LINK statement, 3-38

SPACE parameter
GAT statement, 11-23

SPACE parameter, SMTP statement, 12-11

SPOOL#4 in APPCFGxx member, 12-2

START parameter
CDLC statement, 3-15
CETI statement, 3-19
CLAW statement, 3-24
CTC statement, 3-29
HYPER statement, 3-32
LINK statement, 3-36

starting IUCV address space, 18-14

STARTNVT parameter, SERVICE statement, 9-10

STARTxx member, usage with DNR, 6-9

static address resolution table, usage with HYPER,
3-32

static VIPA, characteristics, 16-10

stopping UCV address space, 18-14

STORCLAS parameter, GAT statement, 11-23

STRIP parameter, FTP statement, 11-14

subchannel in half-duplex mode, 3-13

Index–16 Customization Guide

subnet configuration, 4-2

subnet mask, 3-11

SUBNET parameter, LPR statement, 13-3

SUBNETMASK parameter, NETWORK statement, 3-1

subnets are local, 4-5

SUBSYS parameter, SECURITY statement, 2-20

subsystem name of API subsystem, 6-10

SUBTYPE parameter, SMF statement, 2-13, 2-14, 2-13

supported traps, SNMP agent, 15-3

SVC99WTO parameter, GLOBAL statement, 8-4

SXGAT parameter, SMTP statement, 12-11

SXWTR parameter, SMTP statement, 12-12

SYNRCV parameter, EXIT statement, 2-16

SYS1.VTAMLST, changing APPL statements, 9-54,
9-55, 9-54

SYSOUT class for printer, 13-4

System Management Facility. See SMF

T

T016TIDP,timer daemon, 7-15

T01S3270, 9-3, 9-6, 9-16, 9-3, 9-6, 9-17, 9-3, 9-6, 9-16

tables
control block pools

DNRCFGxx, 20-3
IJTCFGxx, 20-4
SNMCFGxx, 20-5
TCPCFGxx, 20-4

CSECT IUCVCONS, 19-3
DNR configuration members, 6-6
DNRALCxx member format, 6-21
DNRCFGxx

control block pool, 20-3
DNRconfiguration members, 6-8
DNRNETxx, customizing, 6-34
DNRNPCxx, customizing, 6-32
DNRNSC00 member format, 6-30
DNRNSCxx format, 6-30
DNRPRTxx, customizing, 6-35
DNRSLCxx member format, 6-25
DNRSVCxx, customizing, 6-37
IUCVCONS CSECT, 18-9

mail return codes and explanations, 12-14
national use characters, 21-3
OID Object Identifiers, 15-2
protocol trace options, 17-12
SNMP agent, supported traps, 15-3
TCPaccess interface names, 17-3, 17-4, 17-3
TCPaccess interface names, 17-5
UMAPTEMP usage with mail return codes,
12-13, 12-14, 12-17, 12-13, 12-15, 12-17, 12-13,
12-14, 12-17
USSMSG variable data substitution, 9-65, 9-66,
9-65

TABS parameter, FTP statement, 11-14

tape
label, 11-22
mounts, 11-10
support, FTP to tape, 11-10

task groups
APP, 1-5
descriptions, 1-5
DNR, 1-5
IJT, 1-5
MAP, 1-5, 14-1, 14-4, 1-5, 14-1, 14-4, 1-5, 14-1, 14-4
RTM, 1-5
SNM, 1-5, 15-2, 1-5, 15-2, 1-5, 15-2
TCP, 1-5

TCP
parameter, SERVICE statement, 9-10, 11-2, 9-10,
11-2, 9-10, 11-2
statement, 5-2
statement example, 5-11
task group, 1-5
TELNET statement usage, 9-12

TCPaccess interface names, 17-3, 17-4, 17-3

TCPBIND parameter, EXIT statement, 2-16

TCPCFGxx
description, 1-1
ROUTE statement, 4-1, 4-2, 4-1, 4-2, 4-1, 4-2

TCPCFGxx, configuration file, 1-3

TCPCLOSE parameter, EXIT statement, 2-17

TCPESTAB parameter, EXIT statement, 2-17

TCPIP.DATA
data set, configuring for IUCV, 18-6
HPNS, 19-3
IUCV, 18-8

TCPMIB member, SAMP library, 15-1

 Index–17

TELNET
idle time, 9-11
statement

example, 9-21
in APPCFGxx configuration member, 9-1,
9-14, 9-1, 9-14, 9-1, 9-14

TN3270E, 9-3
USS Table support, 9-62, 9-66, 9-63, 9-67, 9-62,
9-66

terminal
environment, TERMPROF, 9-48, 9-49, 9-48
group profile, TERMPROF configuration, 9-26
type, TERMPROF usage, 9-26

TERMPROF
default terminal profiles, 9-52, 9-53, 9-52
description, 9-48, 9-49, 9-48
parameter

TELNET statement, 9-18, 9-19, 9-18
parameter, APPL statement, 9-25
statement

example, 9-53, 9-54, 9-53
usage notes, 9-50, 9-51, 9-50

statement in APPCFGxx member, 9-48, 9-49, 9-48

TERMPROF parameter
APPL statement, 9-26

TERMTYPE parameter, TERMPROF statement, 9-49,
9-50, 9-49

testing DPI functionality, 15-12

THRESHOLD statement in SNMCFGxx, 15-7

throughput performance, improving, 16-4

Time To Live (TTL), HOST statement, 5-21

time, idle time for FTP, 11-6

timeout, FTP, 11-16

timer
client, 7-15
daemon, description, 7-15
retransmit, 5-9

TIMER parameter, IFSPARM statement, 2-5

TIMETOLIVE parameter, IP statement, 5-21

TIMEWAIT parameter, TCP statement, 5-10

TIMEZONE parameter, IFSPARM statement, 2-5

TIMING parameter, LCS statement, 3-35

TN3270 emulation support, 9-28

TN3270E
configuration, 9-3
description, 9-3
LU pool facility, 9-4
parameter, TELNET statement, 9-16, 9-17, 9-16
SERVICE statement, 9-6
T01S3270 module, 9-3, 9-16, 9-3, 9-17, 9-3, 9-16
TERMPROF, 9-49, 9-50, 9-49

TNNONSSL statement, 9-29, 9-34, 9-29, 9-34, 9-29,
9-34

TOKEN16 parameter, MEDIA statement, 3-5

TOKEN4 parameter, MEDIA statement, 3-5

TOS
paramete, SERVICE statement, 9-10
parameter, SERVICE statement, 9-11
setting for FTP, 11-6
specifying, 5-21
setting for FTP, 11-6

TYPE parameter

TRACE parameter
DNR statement, 6-12
SMTP statement, 12-12

trace, internal, 6-10

TRACENAME parameter, IFSPARM statement, 2-5

translate table
for FTP, 11-15
load module, 11-14

translate table maintenance, 21-7

translation character set, 3-23

transparent routing, LINK statement, 3-38

TRANSPARENT, LINK parameter, 3-35

transport protocol provider, TCP task group, 1-5

TRANTBL
parameter of GLOBAL statement, 8-4
parameter of LPR statement, 13-4
parameter, SMTP statement, 12-12

TRANTBL parameter
APPL statement, 9-25
FTP statement, 11-14
TELNET statement, 9-19

troubleshooting IUCV, 18-4

TTL (time to live, specifying, 5-21

Type Of Service. See TOS

Index–18 Customization Guide

TYPE parameter
GAT statement, 11-20, 11-24, 11-20, 11-24, 11-20,
11-24
LUPOOL statement, 9-40
SMF statement, 2-13, 2-14, 2-13

TYPEOFSERVICE parameter, IP statement, 5-21

U

UDP
example, 5-16
parameter of SERVICE statement, 9-10
statement, 5-12
TELNET statement usage, 9-12

UDP parameter, SERVICE statement, 11-2

UDPBIND parameter, EXIT statement, 2-17

UDPRECV parameter, EXIT statement, 2-17, 2-18, 2-17

UDPSEND parameter, EXIT statement, 2-17

UMAPTEMP usage, return codes table, 12-13

UMASK parameter, FTP statement, 11-14

UMODAPPL, using to reassemble and relink, 9-57,
9-58, 9-57

UMODEX00, 11-27

UMODPOOL, 9-59, 9-60, 9-61, 9-59, 9-60

UMODSMTP, 12-4

UMODTRAN, 21-7

Unformatted System Services Table, 9-62, 9-63, 9-62

unit number, 3-31

UNIT parameter
FTP statement, 11-15
FTP statement, 11-15
GAT statement, 11-23

UNIT parameter, SMTP statement, 12-12

UNITCOUNT parameter, GAT statement, 11-23

UNIX System Services, 7-2
BPXPRMxx configuration, 7-2
configuration, 7-2
host name/address resolution, 7-8

user-level services, configuring, 11-2

user-level services, configuring, 12-1, 13-1, 12-1, 13-1,
12-1, 13-1

USS table
configuration for server TELNET, 9-20
LURULE statement, 9-45
performance, 9-66, 9-67, 9-66
Server Telnet operation, 9-66, 9-67, 9-66
support for TELNET, 9-66, 9-67, 9-66
translation tables, 9-66, 9-67, 9-66
USSTAB keyword, 9-11

USSMSG variable data substitution, 9-65, 9-66, 9-65

USSTAB, 9-62, 9-63, 9-62
invoking USSTAB Server Telnet, 9-66, 9-67, 9-66
parameter, SERVICE statement, 9-11, 9-12, 9-11,
9-12, 9-11, 9-12
parameter, TELNET statement, 9-20

V

VARIABLE statement in SNMCFGxx, 15-7

VIEW statement in SNMCFGxx member, 15-6

view usage with SNMP, 15-3

VIPA, 16-29
automatic recovery, 16-13
benefits, 16-8
characteristics

dynamic, 16-10
stactic, 16-10

detecting down interfaces/down interfaces
rerouting with VIPA, 16-9

resolving dynamic conflicts, 16-12
using dynamic, 16-11
virtual IP address, 16-8
with Cisco 7000 configuration, 16-31
with GateD, 16-9

virtual terminal LU names, 9-58, 9-59, 9-58

Virtual IP Addressing, 16-29

virtual link, fault tolerance, 16-23

Virtual Logical Terminals, 9-37

VIRTUAL parameter, MEDIA statement, 3-5

VLT
changing ACBNAMEs, 9-59, 9-60, 9-59
specifying with APPLUPxx, 9-37
terminal definition, adding or deleting, 9-60, 9-61,
9-60

VMCF subsystem name hard-coded for IUCV, 18-2

 Index–19

VMCFNAME parameter, IFSPARM statement, 2-5

VOLUME parameter
FTP statement, 11-15
GAT statement, 11-23

VOLUME parameter, SMTP statement, 12-12

VSREPORT parameter, IFSPARM statement, 2-6

VTAM, automatic logon, 9-61, 9-62, 9-61

VTAMBIND parameter, EXIT statement, 2-18

W

wait time, 3-19

Weighted Fair Queueing (WFQ), 5-21

well-known port number
configuration, 11-2
TCP and UDP port, 9-6
using the SERVICE statement, 9-6

well-known port number configuration, 12-1, 13-1,
12-1, 13-1, 12-1, 13-1

WFQ (weighted fair queueing), 5-21

WKSMX parameter, SMTP statement, 12-13

WRAPRECORD parameter, FTP statement, 11-15

WSNAME parameter, CLAW statement, 3-24

WTIME
control port wait time, 3-19
parameter, CETI statement, 3-19

WTO messages, specifying additional, 8-4

X

XCF Statement, 3-38

XSE parameter, SECURITY statement, 2-20

Z

ZEROWINDOWPROBE parameter, TCP statement,
5-10

Index–20 Customization Guide

	Customization Guide
	Contents
	Chapter 1: Configuration Overview
	Configuration Files
	Configuration File Roadmap
	APPCFGxx Functions
	TCPCFGxx Functions
	IFS Services, SNMP, TelnetRTM and Portmapper
	DNR Files—DNR Configuration Member Functionality

	Task Groups

	Chapter 2: Customizing Address Space Operations (IJTCFGxx)
	The IFSPARM Statement
	IFSPARM Statement Syntax
	IFSPARM Usage Notes

	Controlling Message Logging
	LOGGING Statement
	Component and Message Type Definitions
	Logging Examples

	Setting SMF Parameters
	SMF Statement Syntax
	SMF Usage Notes

	Setting Exit Points
	Security Settings
	Security Statement Syntax

	POOLDEF Settings

	Chapter 3: Network Configuration
	TCP Stack Configuration Member (TCPCFGxx)
	Defining Stack Unique Settings—SYSUNIQ Statement
	SYSUNIQ Statement
	SYSUNIQ Statement Usage Notes
	SYSUNIQ Example

	Defining Physical Medium
	MEDIA Statement Syntax
	MEDIA Statement Usage Notes

	Defining IP Addressing
	NETWORK Statement Syntax
	Network Statement Usage Notes
	Multihomed Example

	Multihome/Multiplex
	NETWORK Example

	Driver Statements
	CDLC Statement
	CDLC Statement Syntax
	CDLC Statement Usage Notes
	Example NCP Coding

	CETI Driver Configuration
	CETI Statement Syntax
	CETI Statement Usage Notes
	CETI Example

	CLAW Driver Configuration
	CLAW Protocol
	CLAW Statement Syntax
	CLAW Statement Usage Notes

	CLAW Example

	CTC Driver Configuration
	CTC Statement Syntax
	CTC Example

	HYPERchannel Configuration
	HYPER Statement
	HYPER Statement Usage Notes
	HYPER Example

	LCS Configuration Parameters
	LCS Statement

	3172 and 8232 Configuration
	LINK Statement Syntax
	LINK Statement Usage Notes
	LINK Example

	XCF Driver Configuration
	XCF Statement
	XCF Statement Syntax
	XCF Statement Usage Notes
	XCF Example

	ARP Configuration
	ARP Statement Syntax
	ARP Statement Usage Notes
	ARP Examples

	Defining Application Dynamic VIPA Subnets
	VIPANET Statement Syntax
	VIPANET Statement Usage Notes
	VIPANET Example

	Chapter 4: Internet Route Configuration
	Manually Specifying Internet Routes
	ROUTE Statement
	ROUTE Statement Syntax
	Subnets Are Local
	Usage Notes for the ROUTE Statement
	ROUTE Statement Examples

	Chapter 5: TCP, UDP, RAW and IP Protocol Configuration (TCPCFGxx)
	Fine-Tuning the Transmission Control Protocol
	TCP Statement Syntax
	TCP Examples

	Fine-Tuning the User Datagram Protocol
	UDP Statement Syntax
	UDP Examples

	Fine-Tuning the RAW Protocol
	RAW Statement Syntax

	Fine-Tuning the Internet Protocol
	IP Statement Syntax

	POOLDEF Settings

	Chapter 6: Domain Name Resolver (DNR) Configuration
	Introducing the Domain Name Resolver (DNR)
	Services Provided by DNR
	Major Components of the Domain Name System \(DN�
	Locally Managed Names
	Domain Name Specification
	How DNR Resolves Host Names
	DNR Suffix Conventions

	Initial DNR Customization
	Configuring DNR in LOCAL or GLOBAL Mode
	Primary DNR Configuration Member (DNRCFGxx)
	POOLDEF Statement
	DNR Statement Syntax

	Controlling DNR Member Processing
	DNRCFGxx Examples
	Recommendations

	Secondary DNR Members
	Mapping Host Names (DNRHSTxx)
	Host Name Syntax
	DNRHSTxx Example
	GLOBAL Example
	LOCAL Example

	Host Name Aliases (DNRALCxx)
	DNRALCxx Format
	Search String Syntax
	Host Aliases Examples

	Search Lists (DNRSLCxx)
	Search List Syntax
	DNRSLCxx Usage
	Search List Examples

	Coordinating DNRALCxx and DNRSLCxx Configuration
	DNR Alias and Search List Recommendations

	Name Servers (DNRNSCxx)
	Name Server Syntax
	DNRNSCxx Operation
	Name Servers Example

	Setting Network Preferences (DNRNPCxx)
	Network Preferences Syntax
	DNRNPCxx Configuration
	Network Preference Example

	Setting Network Name to Network Number Mapping (DNRNETxx)
	Network Syntax
	Network Names Examples

	Setting Protocol Name to Address Mappings (DNRPRTxx)
	Protocol Name Syntax
	Protocol Names Example

	Setting Protocol Name/Service Pairs to Port Numbers (DNRSVCxx)
	Protocol Name/Service Pair Syntax
	DNRSVCxx Configuration

	Service Names Example

	Setting RPC Name-to-Program Mappings (DNRRPCxx)
	RPC Name-to-Program Mappings Syntax
	RPC Name Example

	DNR Customization Examples
	DNR with Only Configuration Data
	Migration of DNR to DNS
	DNR with Only the Domain Name System
	DNR Configuration Set for a Network with a Domain Name Server
	DNRALCWG
	DNRCFGWG
	DNRHSTWG
	DNRNETWG
	DNRNPCWG
	DNRNSCWG
	DNRSLCWG

	DNR Configuration Set Without a Domain Name Server
	DNRALCWL
	DNRCFGWL
	DNRHSTWL
	DNRNPCWL
	DNRSLCWL

	DNR Configuration Set with a Domain Name Server and a Firewall
	DNRALCWF
	DNRCFGWF
	DNRHSTWF
	DNRNETWF
	DNRNPCWF
	DNRNSCWF
	DNRSLCWF

	Chapter 7: UNIX System Services Configuration
	Configuring for UNIX System Services
	SYS1.PARMLIB (BPXPRMxx)
	Using the Unicenter TCPaccess Stack Only
	FILESYSTYPE Statement
	FILESYSTYPE Statement Syntax

	NETWORK Statement
	NETWORK Statement Syntax

	Common Inet Support
	FILESYSTYPE Statement
	FILESYSTYPE Statement Syntax

	SUBFILESYSTYPE Statement
	SUBFILESYSTYPE Statement Syntax

	NETWORK Statement
	NETWORK Statement Syntax

	Common Inet and USS (OE) Considerations

	Startup Configuration
	Host Name/Address Resolution
	UNIX System Services Telnet Daemon Access
	Configuring T016TNDP to Run from an MVS Data Set
	Configuring T016TNDP to Run in the INETD Environment
	OE Telnet Banner Display
	Invoking the T016TNDP Telnet Daemon for Debugging

	UNIX System Services Timer Daemon Access
	Configuring T016TIDP and T016TICP to Run from MVS
	Invoking the T016TIDP Timer-Synchronization Daemon
	Usage Guidelines
	Example

	Invoking the T016TICP Timer-Synchronization Sample Client
	Example

	Chapter 8: Global Application Parameters
	GLOBAL Parameters (APPCFGxx)
	GLOBAL Statement
	GLOBAL Statement Syntax

	Examples

	Chapter 9: Telnet Configuration
	Telnet Configuration Options
	Configuring the TN3270E Telnet Server
	TN3270E Usage Considerations
	Telnet SSL—Secure Sockets Layer
	Functions Not Supported by the TN3270E Servers

	Protocol Service Segment (SERVICE)
	SERVICE Syntax
	Telnet SERVICE Statement Usage Notes
	SERVICE Examples
	SERVICE Statement Example

	The TELNET Statement
	TELNET Statement Syntax
	Usage Notes
	TELNET Examples

	Server Telnet Application Segment (APPL)
	TELNET APPL Syntax
	TELNET APPL Statement Usage Notes
	APPL Examples

	Additional Configuration Statements for the T04STSSL Server
	TNGLOBAL Statement
	TNGLOBALStatement Syntax

	TNNONSSL Statement
	TNNONSSL Statement Syntax

	KEYRING Statement
	KEYRING Statement Syntax

	TNSSL Statement
	TNSSL Statement Syntax
	TNSSL Usage Notes

	SSL Configuration Example

	The LU Pool Facility—APPLUPxx Member
	Virtual Terminal Setup
	LU Name Pools (LUPOOL)
	LU Name Rules (LURULE)
	Refreshing the LUPOOL Facility

	LUPOOL Statement
	
	LUPOOL Statement Syntax

	LU Specification for TN3270 and Printers
	Examples
	Specifying One Printer for Multiple Terminal LUs

	LURULE Statement
	
	LURULE Statement Syntax
	Initial Changes to APPLUPxx

	Usage Notes
	APPLUPxx Usage Notes
	APPLUPxx Examples

	Terminal Profile (TERMPROF)
	TERMPROF Statement Syntax
	TERMPROF Statement Usage Notes
	Default Terminal Profiles
	TERMPROF Example

	Modifying VTAMLST Application Definitions
	Setting Up Pools
	Unicenter TCPaccess Telnet Server Application Definitions
	Customizing the Application Definition ACBNAME
	Customizing the Application Definition LU Name
	Customizing the Terminal Definition LU Name
	Customizing the Terminal Definition ACBNAME
	Adding or Deleting Terminal Definitions

	Configuring to VTAM Applications

	USS Table Support for Server Telnet
	USS Table Customization Requirements
	Using LOGMODE with USSTAB
	Preparing USS Tables

	Chapter 10: TelnetRTM Configuration
	RTMCFGxx Customization
	POOLDEF Statements
	
	Example

	Chapter 11: Configuring FTP
	The File Transfer Protocol (FTP) Service Statement
	FTP SERVICE Statement Syntax
	Example

	FTP Configuration Parameters—FTP Statement
	FTP Statement Syntax
	FTP Statement Usage Notes
	FTP Examples

	Generic Attributes Table (GAT)
	GAT Statement Syntax
	GAT Statement Usage Notes
	GAT Examples

	FTP Support for SMF Activity Reporting and User Accounting
	Defining SMF
	Defining FTP to Require Account Data
	Running an SMP/E APPLY CHECK
	Defining SMF Account Exit

	FTPSRC and FTPLOGIN Exits
	Server FTP JES Support
	Minimum Requirements
	Using the Server FTP JES Interface
	Server FTP JES Interface

	Examples

	Chapter 12: Mail Customization (SMTP)
	Configuring User-Level Services
	Configuring Simple Mail Transfer Protocol (SMTP) Facilities
	Mail Service Statements
	Customizing Your Mail Environment

	User/Server SMTP Segment (SMTP)
	User SMTP Operands Syntax
	Server SMTP Operands Syntax
	User and Server SMTP Operands Syntax
	Spooler SMTP Operands Syntax
	User and Spooler Operands Syntax
	SMTP Usage Notes

	Using SMTP
	Usage Notes for SMTP
	SMTP Examples

	Chapter 13: Configuring Remote Printing Services
	Printing Services
	SERVICE Statement Syntax for LPR
	Usage Notes
	Examples

	Network Line Printer Segment (LPR)
	LPR Statement Syntax
	Usage Notes
	LPR Statement Example

	Chapter 14: Remote Procedure Call (RPC) Configuration
	The Portmapper
	Port Registration

	MAPCFGxx Configuration
	PORTMAP Statement Syntax
	Example

	Chapter 16: Fault Tolerant Network Configuration
	Unicenter TCPaccess Fault Tolerant Feature
	Fault Tolerant Limitations
	Managing Controller Failures
	Managing Router Failures

	Multiplexing
	Configuring the TCPCFGxx Member for Multiplexing
	Balancing I/O Traffic

	Router Failures
	Multihoming
	Configuration Example
	Virtual IP Addressing
	Benefits of Virtual IP Addressing
	Detecting Down Interfaces
	Using VIPA with GateD

	Static and Dynamic VIPAs
	Using Dynamic VIPAs
	Using Application Dynamic VIPAs
	Resolving Dynamic VIPA Conflicts

	Automatic VIPA Recovery
	Environment
	Configurations
	TCPCFGF1
	GTDCFGF1
	TCPCFGF2
	GTDCFGF2
	TCPCFGD2
	TCPCFGA2
	TCPCFGD1
	TCPCFGA1

	GateD
	Routing Protocols
	RIP
	OSPF
	GateD Example

	Non-Broadcast Multi-Access

	Improving Fault Tolerant Reliability
	TCP Parameters

	Running the Routing Daemon (GateD)
	GateD Routing Protocol
	GTDCFGxx Member
	Configuring Virtual IP Addressing
	VIPA Configuration Examples

	Example of a Fault Tolerant Configuration
	Host Addresses
	Subnet Addresses
	Network and Gateway Addresses
	Backbone Network Addresses
	Unicenter TCPaccess Configuration
	GateD Configuration
	CIP Configuration Examples

	Chapter 17: GateD Configuration—GTDCFGxx
	GateD Configuration Member (GTDCFGxx)
	Statement Classes
	Statement Primitives
	Directive Statements
	Trace Statements
	Options Statements
	Interfaces Statements
	Definition Statements
	Protocol Statements
	RIP Protocol Configuration
	OSPF Protocol Configuration

	Chapter 18: Inter-User Communications Vehicle (IUCV) Sockets
	IUCV Sockets
	C Socket Replacement Library
	IUCV Socket Compatibility
	Initializing the IUCV Sockets

	Configuration Information
	Configuring the TCPIP.DATA Data Set
	TCPIP.DATA Implemented
	Configuring the IJTCFGxx Member
	IFSPARM Statement

	Converting from IBM TCP/IP
	Converting from API/Link
	Compiling/Linking C Applications Using IUCV
	Compile and Link a Nonreentrant IUCV Program
	Sample JCL

	Compile and Link a Reentrant IUCV Program
	Sample JCL

	Starting and Stopping IUCV Address Space
	Limitations and Restrictions
	Additional References

	Chapter 19: High Performance Native Sockets (HPNS)
	IFSPARM Statement
	TCPIP.DATA Implemented
	
	HOSTNAME Parameter

	Compiling/Linking C Applications Using HPNS
	Compile and Link a Nonreentrant HPNS Program
	Sample JCL

	Compile and Link a Reentrant HPNS Program
	Sample JCL

	Chapter 20: Defining Control Block Pools (POOLDEF Statement)
	Defining Control Block Pools
	Configuration Members
	POOLDEF Statement Syntax
	Pool Types
	DNRCFGxx Control Block Pool
	IJTCFGxx Control Block Pools
	TCPCFGxx Control Block Pools
	SNMCFGxx Control Block Pools
	RTMCFGxx Control Block Pools

	Chapter 21: Translation Tables
	Unicenter TCPaccess Telnet Server Character Translation
	Translate Table Specification
	Character Table Usage Notes

	Choosing a Telnet Translation Table
	National-Use Characters
	Modifying or Adding Translate Tables
	Structure of Translate Table Modules
	Generating Prefixes for National Language Translate Tables
	XLTBL Macro Syntax
	XLTBL Macro Example
	Maintaining Translation Tables Using UMODTRAN

	Chapter 22: Bind Security
	Configuring Bind Security
	BINDSEC Statement
	PORTRULE Statement
	PORTRULE Statement Syntax
	IPRULE Statement

	Appendix A: SSL Considerations
	SAF Considerations for Certificates
	
	Examples

	Authorizing the TCPaccess/SSL Server User ID

	TN3270E/SSL Server Performance

	Appendix B: Interface to Unicenter NetSpy
	What Unicenter NetSpy Provides
	Setup

	Index

	booklist:

